Targeted cancer diagnosis with radiolabeled endostatin
Data(s) |
01/01/2005
|
---|---|
Resumo |
Nuclear imaging is used for non-invasive detection, staging and therapeutic monitoring of tumors through the use of radiolabeled probes. Generally, these probes are used for applications in which they provide passive, non-specific information about the target. Therefore, there is a significant need for actively-targeted radioactive probes to provide functional information about the site of interest. This study examined endostatin, an endogenous inhibitor of tumor angiogenesis, which has affinity for tumor vasculature. The major objective of this study was to develop radiolabeled analogues of endostatin through novel chemical and radiochemical syntheses, and to determine their usefulness for tumor imaging using in vitro and in vivo models of vascular, mammary and prostate tumor cells. I hypothesize that this binding will allow for a non-invasive approach to detection of tumor angiogenesis, and such detection can be used for therapeutic monitoring to determine the efficacy of anti-angiogenic therapy. ^ The data showed that endostatin could be successfully conjugated to the bifunctional chelator ethylenedicysteine (EC), and radiolabeled with technetium-99m and gallium-68, providing a unique opportunity to use a single precursor for both nuclear imaging modalities: 99mTc for single photon emission computed tomography and 68Ga for positron emission tomography, respectively. Both radiolabeled analogues showed increased binding as a function of time in human umbilical vein endothelial cells and mammary and prostate tumor cells. Binding could be blocked in a dose-dependent manner by unlabeled endostatin implying the presence of endostatin receptors on both vascular and tumor cells. Animal biodistribution studies demonstrated that both analogues were stable in vivo, showed typical reticuloendothelial and renal excretion and produced favorable absorbed organ doses for application in humans. The imaging data provide evidence that the compounds quantitate tumor volumes with clinically-useful tumor-to-nontumor ratios, and can be used for treatment follow-up to depict changes occurring at the vascular and cellular levels. ^ Two novel endostatin analogues were developed and demonstrated interaction with vascular and tumor cells. Both can be incorporated into existing nuclear imaging platforms allowing for potential wide-spread clinical benefit as well as serving as a diagnostic tool for elucidation of the mechanism of action of endostatin. ^ |
Identificador |
http://digitalcommons.library.tmc.edu/dissertations/AAI3180666 |
Idioma(s) |
EN |
Publicador |
DigitalCommons@The Texas Medical Center |
Fonte |
Texas Medical Center Dissertations (via ProQuest) |
Palavras-Chave | #Health Sciences, Pharmacology|Health Sciences, Oncology |
Tipo |
text |