951 resultados para HF Propagation
Resumo:
The paper discusses a wave propagation based method for identifying the damages in an aircraft built up structural component such as delamination and skin-stiffener debonding. First, a spectral finite element mode l (SFEM) is developed for modeling wave propagation in general built-up structures by using the concept of assembling 2D spectral plate elements. The developed numerical model is validated using conventional 2-D FEM. Studies are performed to capture the mode coupling,that is, the flexural-axial coupling present in the wave responses. Lastly, the damages in these built up structures are then identified using the developed SFEM model and the measured responses using the concept Damage Force Indicator (DFI) technique.
Resumo:
Damage detection using guided Lamb waves is an important tool in Structural health Monitoring. In this paper, we outline a method of obtaining Lamb wave modes in composite structures using two dimensional Spectral Finite Elements. Using this approach, Lamb wave dispersion curves are obtained for laminated composite structures with different fibre orientation. These propagating Lamb wave modes are pictorially captured using tone burst signal.
Resumo:
A novel Projection Error Propagation-based Regularization (PEPR) method is proposed to improve the image quality in Electrical Impedance Tomography (EIT). PEPR method defines the regularization parameter as a function of the projection error developed by difference between experimental measurements and calculated data. The regularization parameter in the reconstruction algorithm gets modified automatically according to the noise level in measured data and ill-posedness of the Hessian matrix. Resistivity imaging of practical phantoms in a Model Based Iterative Image Reconstruction (MoBIIR) algorithm as well as with Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) with PEPR. The effect of PEPR method is also studied with phantoms with different configurations and with different current injection methods. All the resistivity images reconstructed with PEPR method are compared with the single step regularization (STR) and Modified Levenberg Regularization (LMR) techniques. The results show that, the PEPR technique reduces the projection error and solution error in each iterations both for simulated and experimental data in both the algorithms and improves the reconstructed images with better contrast to noise ratio (CNR), percentage of contrast recovery (PCR), coefficient of contrast (COC) and diametric resistivity profile (DRP). (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The paper analyses the results of experiments on the propagation rate in a fuel bed under gasification conditions in a co-current reactor configuration. Experiments using wood chips with different values of moisture content have been conducted under gasification conditions. The influence of air mass flux on the propagation rate, peak temperature and gas quality is investigated. It is observed from the experiments that the flame front propagation rate initially increases as the air mass flux increased, reaching a peak propagation rate, and further increase in the air mass flux results in a decrease in the propagation rate. However, the bed movement increases with the increase in air mass flux. The experimental results provide an understanding on influence of the fuel properties on propagation front. The surface area per unit volume of the particles in the packed bed plays an important role in the propagation rate. It has been argued that the flaming pyrolysis contributes towards the flame propagation as opposed to the overall combustion process in a packed bed. The calorific value of the producer gas generated is nearly the same over the entire range of air mass flux for bone-dry and 10% moist wood. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper presents experimental and analytical studies on fatigue crack propagation in concrete-concrete cold jointed interface specimens. Beams of different sizes having jointed interface between two concretes with different elastic properties are tested under fatigue loading. The acoustic emission technique is used for monitoring the fatigue crack growth. It is observed that the interface having a higher moduli mismatch tends to behave in a brittle manner. The CMOD compliances at different loading cycles are measured and the equivalent crack lengths are determined from a finite element analysis. An analytical model for crack growth rate is proposed using the concepts of the dimensional analysis. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The RES-TOCSY experiment for accurate determination of heteronuclear (n)J(HF) is reported. The main feature of the proposed technique is the accurate measurement of magnitudes of heteronuclear couplings from the displacement of cross sections of the 2D spectrum and their relative signs from the slopes of their displacement vectors. The experiment is highly advantageous as the couplings of smaller magnitudes hidden within line widths could also be accurately determined, and also in situations when the spectrum does not display any coupling fine structures. The efficient utility of the developed pulse sequence is unambiguously established on fluorine containing aromatic and aliphatic molecules. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a spectral finite element model (SFEM) using an efficient and accurate layerwise (zigzag) theory, which is applicable for wave propagation analysis of highly inhomogeneous laminated composite and sandwich beams. The theory assumes a layerwise linear variation superimposed with a global third-order variation across the thickness for the axial displacement. The conditions of zero transverse shear stress at the top and bottom and its continuity at the layer interfaces are subsequently enforced to make the number of primary unknowns independent of the number of layers, thereby making the theory as efficient as the first-order shear deformation theory (FSDT). The spectral element developed is validated by comparing the present results with those available in the literature. A comparison of the natural frequencies of simply supported composite and sandwich beams obtained by the present spectral element with the exact two-dimensional elasticity and FSDT solutions reveals that the FSDT yields highly inaccurate results for the inhomogeneous sandwich beams and thick composite beams, whereas the present element based on the zigzag theory agrees very well with the exact elasticity solution for both thick and thin, composite and sandwich beams. A significant deviation in the dispersion relations obtained using the accurate zigzag theory and the FSDT is also observed for composite beams at high frequencies. It is shown that the pure shear rotation mode remains always evanescent, contrary to what has been reported earlier. The SFEM is subsequently used to study wavenumber dispersion, free vibration and wave propagation time history in soft-core sandwich beams with composite faces for the first time in the literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The effect of Zr, Hf, and Sn in BaTiO3 has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d(33)), with Sn modification exhibiting the highest value similar to 425 pC/N. (C) 2014 AIP Publishing LLC.
Resumo:
In this paper, we present a new multiscale method which is capable of coupling atomistic and continuum domains for high frequency wave propagation analysis. The problem of non-physical wave reflection, which occurs due to the change in system description across the interface between two scales, can be satisfactorily overcome by the proposed method. We propose an efficient spectral domain decomposition of the total fine scale displacement along with a potent macroscale equation in the Laplace domain to eliminate the spurious interfacial reflection. We use Laplace transform based spectral finite element method to model the macroscale, which provides the optimum approximations for required dynamic responses of the outer atoms of the simulated microscale region very accurately. This new method shows excellent agreement between the proposed multiscale model and the full molecular dynamics (MD) results. Numerical experiments of wave propagation in a 1D harmonic lattice, a 1D lattice with Lennard-Jones potential, a 2D square Bravais lattice, and a 2D triangular lattice with microcrack demonstrate the accuracy and the robustness of the method. In addition, under certain conditions, this method can simulate complex dynamics of crystalline solids involving different spatial and/or temporal scales with sufficient accuracy and efficiency. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper addresses the formulation and numerical efficiency of various numerical models of different nonconserving time integrators for studying wave propagation in nonlinear hyperelastic waveguides. The study includes different nonlinear finite element formulations based on standard Galerkin finite element model, time domain spectral finite element model, Taylor-Galerkin finite element model, generalized Galerkin finite element model and frequency domain spectral finite element model. A comparative study on the computational efficiency of these different models is made using a hyperelastic rod model, and the optimal computational scheme is identified. The identified scheme is then used to study the propagation of transverse and longitudinal waves in a Timoshenko beam with Murnaghan material nonlinearity.
Resumo:
We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and Wastlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the (2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.
Resumo:
A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents the study of wave propagation in quasicrystals. Our interest is in the computation of the wavenumber (k(n)) and group speed (c(g)) of the phonon and phason displacement modes of one, two, and three dimensional quasicrystals. These wave parameter expressions are derived and computed using the elasto-hydrodynamic equations for quasicrystals. For the computation of the wavenumber and group speeds, we use Fourier transform approximation of the phonon and the phason displacement modes. The characteristic equations obtained are a polynomial equation of the wavenumber (k(n)), with frequency as a parameter. The corresponding group speeds (c(g)) for different frequencies are then computed from the wavenumber k(n). The variation of wavenumber and group speeds with frequency is plotted for the 1-D quasicrystal, 2-D decagonal Al-Ni-Co quasicrystals, and 3-D icosahedral Al-Pd-Mn and Zn-Mg-Sc quasicrystals. From the wavenumber and group speeds plots, we obtain the cut-off frequencies for different spatial wavenumber eta(m). The results show that for 1-D, 2-D, and 3-D quasicrystals, the phonon displacement modes are non-dispersive for low values of eta(m) and becomes dispersive for increasing values of eta(m). The cut-off frequencies are not observed for very low values of eta(m), whereas the cut-off frequency starts to appear with increasing eta(m). The group speeds of the phason displacement modes are orders of magnitude lower than that of the phonon displacement modes, showing that the phason modes do not propagate, and they are essentially the diffusive modes. The group speeds of the phason modes are also not influenced by eta(m). The group speeds for the 2-D quasicrystal at 35 kHz is also simulated numerically using Galerkin spectral finite element methods in frequency domain and is compared with the results obtained using wave propagation analysis. The effect of the phonon and phason elastic constants on the group speeds is studied using 3-D icosahedral Al-Pd-Mn and Zn-Mg-Sc quasicrystals. It is also shown that the phason elastic constants and the coupling coefficient do not affect the group speeds of the phonon displacement modes. (C) 2015 AIP Publishing LLC.