940 resultados para Graph analytics
Resumo:
Präsentiert wird ein vollständiger, exakter und effizienter Algorithmus zur Berechnung des Nachbarschaftsgraphen eines Arrangements von Quadriken (Algebraische Flächen vom Grad 2). Dies ist ein wichtiger Schritt auf dem Weg zur Berechnung des vollen 3D Arrangements. Dabei greifen wir auf eine bereits existierende Implementierung zur Berechnung der exakten Parametrisierung der Schnittkurve von zwei Quadriken zurück. Somit ist es möglich, die exakten Parameterwerte der Schnittpunkte zu bestimmen, diese entlang der Kurven zu sortieren und den Nachbarschaftsgraphen zu berechnen. Wir bezeichnen unsere Implementierung als vollständig, da sie auch die Behandlung aller Sonderfälle wie singulärer oder tangentialer Schnittpunkte einschließt. Sie ist exakt, da immer das mathematisch korrekte Ergebnis berechnet wird. Und schließlich bezeichnen wir unsere Implementierung als effizient, da sie im Vergleich mit dem einzigen bisher implementierten Ansatz gut abschneidet. Implementiert wurde unser Ansatz im Rahmen des Projektes EXACUS. Das zentrale Ziel von EXACUS ist es, einen Prototypen eines zuverlässigen und leistungsfähigen CAD Geometriekerns zu entwickeln. Obwohl wir das Design unserer Bibliothek als prototypisch bezeichnen, legen wir dennoch größten Wert auf Vollständigkeit, Exaktheit, Effizienz, Dokumentation und Wiederverwendbarkeit. Über den eigentlich Beitrag zu EXACUS hinaus, hatte der hier vorgestellte Ansatz durch seine besonderen Anforderungen auch wesentlichen Einfluss auf grundlegende Teile von EXACUS. Im Besonderen hat diese Arbeit zur generischen Unterstützung der Zahlentypen und der Verwendung modularer Methoden innerhalb von EXACUS beigetragen. Im Rahmen der derzeitigen Integration von EXACUS in CGAL wurden diese Teile bereits erfolgreich in ausgereifte CGAL Pakete weiterentwickelt.
Resumo:
La velocità di cambiamento che caratterizza il mercato ha posto l'attenzione di molte imprese alla Business Analysis. La raccolta, la gestione e l'analisi dei dati sta portando numerosi benefici in termini di efficienza e vantaggio competitivo. Questo è reso possibile dal supporto reale dei dati alla strategia aziendale. In questa tesi si propone un'applicazione della Business Analytics nell'ambito delle risorse umane. La valorizzazione del Capitale Intellettuale è fondamentale per il miglioramento della competitività dell'impresa, favorendo così la crescita e lo sviluppo dell'azienda. Le conoscenze e le competenze possono incidere sulla produttività, sulla capacità innovativa, sulle strategie e sulla propria reattività a comprendere le risorse e le potenzialità a disposizione e portano ad un aumento del vantaggio competitivo. Tramite la Social Network Analysis si possono studiare le relazioni aziendali per conoscere diversi aspetti della comunicazione interna nell'impresa. Uno di questi è il knowledge sharing, ovvero la condivisione della conoscenza e delle informazioni all'interno dell'organizzazione, tema di interesse nella letteratura per via delle potenzialità di crescita che derivano dal buon utilizzo di questa tecnica. L'analisi si è concentrata sulla mappatura e sullo studio del flusso di condivisione di due delle principali componenti della condivisione di conoscenza: sharing best prectices e sharing mistakes, nel caso specifico si è focalizzato lo studio sulla condivisione di miglioramenti di processo e di problematiche o errori. È stata posta una particolare attenzione anche alle relazioni informali all'interno dell'azienda, con l'obiettivo di individuare la correlazione tra i rapporti extra-professionali nel luogo di lavoro e la condivisione di informazioni e opportunità in un'impresa. L'analisi delle dinamiche comunicative e l'individuazione degli attori più centrali del flusso informativo, permettono di comprendere le opportunità di crescita e sviluppo della rete di condivisione. La valutazione delle relazioni e l’individuazione degli attori e delle connessioni chiave fornisce un quadro dettagliato della situazione all'interno dell'azienda.
Resumo:
Biological data are inherently interconnected: protein sequences are connected to their annotations, the annotations are structured into ontologies, and so on. While protein-protein interactions are already represented by graphs, in this work I am presenting how a graph structure can be used to enrich the annotation of protein sequences thanks to algorithms that analyze the graph topology. We also describe a novel solution to restrict the data generation needed for building such a graph, thanks to constraints on the data and dynamic programming. The proposed algorithm ideally improves the generation time by a factor of 5. The graph representation is then exploited to build a comprehensive database, thanks to the rising technology of graph databases. While graph databases are widely used for other kind of data, from Twitter tweets to recommendation systems, their application to bioinformatics is new. A graph database is proposed, with a structure that can be easily expanded and queried.
Resumo:
Il lavoro che ho sviluppato presso l'unità di RM funzionale del Policlinico S.Orsola-Malpighi, DIBINEM, è incentrato sull'analisi dati di resting state - functional Magnetic Resonance Imaging (rs-fMRI) mediante l'utilizzo della graph theory, con lo scopo di valutare eventuali differenze in termini di connettività cerebrale funzionale tra un campione di pazienti affetti da Nocturnal Frontal Lobe Epilepsy (NFLE) ed uno di controlli sani. L'epilessia frontale notturna è una peculiare forma di epilessia caratterizzata da crisi che si verificano quasi esclusivamente durante il sonno notturno. Queste sono contraddistinte da comportamenti motori, prevalentemente distonici, spesso complessi, e talora a semiologia bizzarra. L'fMRI è una metodica di neuroimaging avanzata che permette di misurare indirettamente l'attività neuronale. Tutti i soggetti sono stati studiati in condizioni di resting-state, ossia di veglia rilassata. In particolare mi sono occupato di analizzare i dati fMRI con un approccio innovativo in campo clinico-neurologico, rappresentato dalla graph theory. I grafi sono definiti come strutture matematiche costituite da nodi e links, che trovano applicazione in molti campi di studio per la modellizzazione di strutture di diverso tipo. La costruzione di un grafo cerebrale per ogni partecipante allo studio ha rappresentato la parte centrale di questo lavoro. L'obiettivo è stato quello di definire le connessioni funzionali tra le diverse aree del cervello mediante l'utilizzo di un network. Il processo di modellizzazione ha permesso di valutare i grafi neurali mediante il calcolo di parametri topologici che ne caratterizzano struttura ed organizzazione. Le misure calcolate in questa analisi preliminare non hanno evidenziato differenze nelle proprietà globali tra i grafi dei pazienti e quelli dei controlli. Alterazioni locali sono state invece riscontrate nei pazienti, rispetto ai controlli, in aree della sostanza grigia profonda, del sistema limbico e delle regioni frontali, le quali rientrano tra quelle ipotizzate essere coinvolte nella fisiopatologia di questa peculiare forma di epilessia.
Resumo:
Il presente elaborato ha come oggetto la progettazione e lo sviluppo di una soluzione Hadoop per il Calcolo di Big Data Analytics. Nell'ambito del progetto di monitoraggio dei bottle cooler, le necessità emerse dall'elaborazione di dati in continua crescita, ha richiesto lo sviluppo di una soluzione in grado di sostituire le tradizionali tecniche di ETL, non pi�ù su�fficienti per l'elaborazione di Big Data. L'obiettivo del presente elaborato consiste nel valutare e confrontare le perfomance di elaborazione ottenute, da un lato, dal flusso di ETL tradizionale, e dall'altro dalla soluzione Hadoop implementata sulla base del framework MapReduce.
Resumo:
We propose a novel methodology to generate realistic network flow traces to enable systematic evaluation of network monitoring systems in various traffic conditions. Our technique uses a graph-based approach to model the communication structure observed in real-world traces and to extract traffic templates. By combining extracted and user-defined traffic templates, realistic network flow traces that comprise normal traffic and customized conditions are generated in a scalable manner. A proof-of-concept implementation demonstrates the utility and simplicity of our method to produce a variety of evaluation scenarios. We show that the extraction of templates from real-world traffic leads to a manageable number of templates that still enable accurate re-creation of the original communication properties on the network flow level.
Resumo:
Optical coherence tomography (OCT) is a well-established image modality in ophthalmology and used daily in the clinic. Automatic evaluation of such datasets requires an accurate segmentation of the retinal cell layers. However, due to the naturally low signal to noise ratio and the resulting bad image quality, this task remains challenging. We propose an automatic graph-based multi-surface segmentation algorithm that internally uses soft constraints to add prior information from a learned model. This improves the accuracy of the segmentation and increase the robustness to noise. Furthermore, we show that the graph size can be greatly reduced by applying a smart segmentation scheme. This allows the segmentation to be computed in seconds instead of minutes, without deteriorating the segmentation accuracy, making it ideal for a clinical setup. An extensive evaluation on 20 OCT datasets of healthy eyes was performed and showed a mean unsigned segmentation error of 3.05 ±0.54 μm over all datasets when compared to the average observer, which is lower than the inter-observer variability. Similar performance was measured for the task of drusen segmentation, demonstrating the usefulness of using soft constraints as a tool to deal with pathologies.