995 resultados para Grain number
Resumo:
Square and two-level pulse width modulation (PWM) magnetic induction waveforms are investigated and their effect on electrical steels losses as a function of the grain size is determined. The increase of hysteresis losses-as compared to that resulting from sinusoidal voltages-occurs only for two-level PWM waveforms. Total losses are lower for square waveform, and the difference between losses under square and sinusoidal waveform increase with increasing grain size, result explained with the loss separation model. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We study the spreading of contagious diseases in a population of constant size using susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations (ODEs) and probabilistic cellular automata (PCA). In the PCA model, each individual (represented by a cell in the lattice) is mainly locally connected to others. We investigate how the topological properties of the random network representing contacts among individuals influence the transient behavior and the permanent regime of the epidemiological system described by ODE and PCA. Our main conclusions are: (1) the basic reproduction number (commonly called R(0)) related to a disease propagation in a population cannot be uniquely determined from some features of transient behavior of the infective group; (2) R(0) cannot be associated to a unique combination of clustering coefficient and average shortest path length characterizing the contact network. We discuss how these results can embarrass the specification of control strategies for combating disease propagations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 mu m). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B(50) and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In stored grains, smaller depositions and great variation with respect to theoretical insecticide doses are frequently found. The objective of this work was to study the effectiveness of the standard method (ISO 5682/1-1996) employed to evaluate hydraulic nozzles used in stored corn and wheat grain protection experiments. The transversal volumetric distribution and droplet spectrum of a model TJ-60 8002EVS nozzle were determined in order to calibrate a spraying system for an application rate of 5 L/t and to obtain theoretical concentrations of 10 and 0.5 mg/kg of fenitrothion and esfenvalerate, respectively. After treatment, the corn and wheat grains were processed and deposition was analyzed by gas chromatography. The type of grain did not have any influence on insecticide deposition and was dependent upon insecticide only. The insecticide deposits on the grains only reached 42.1 and 38.2% of the intended theoretical values for fenitrothion and esfenvalerate concentrations, respectively. These results demonstrate the ineffectiveness of the standard evaluation method for hydraulic nozzles employed in stored grain protection experiments.
Resumo:
A hydraulic jump is characterized by strong energy dissipation and mixing, large-scale turbulence, air entrainment, waves and spray. Despite recent pertinent studies, the interaction between air bubbles diffusion and momentum transfer is not completely understood. The objective of this paper is to present experimental results from new measurements performed in rectangular horizontal flume with partially-developed inflow conditions. The vertical distributions of void fraction and air bubbles count rate were recorded for inflow Froude number Fr1 in the range from 5.2 to 14.3. Rapid detrainment process was observed near the jump toe, whereas the structure of the air diffusion layer was clearly observed over longer distances. These new data were compared with previous data generally collected at lower Froude numbers. The comparison demonstrated that, at a fixed distance from the jump toe, the maximum void fraction Cmax increases with the increasing Fr1. The vertical locations of the maximum void fraction and bubble count rate were consistent with previous studies. Finally, an empirical correlation between the upper boundary of the air diffusion layer and the distance from the impingement point was provided.
Resumo:
Pulsed field gel electrophoresis of intact chromosomes of Babesia bovis revealed four chromosomes in the haploid genome. A telomere probe, derived from Plasmodium berghei, hybridised to eight SfiI restriction fragments of genomic B. bovis DNA digests indicating the presence of four chromosomes. A small subunit (18S) ribosomal RNA gene probe hybridised to the third chromosome only. The genome size of B. bovis is estimated to be 9.4 million base pairs. The sizes of chromosomes 1, 2, 3 and 4 are estimated to be 1.4, 2.0, 2.8 and 3.2 million base pairs, respectively. (C) 1997 Australian Society for Parasitology. Published by Elsevier Science Ltd.
Resumo:
A parametric study is carried out to investigate how geological inhomogeneity affects the pore-fluid convective flow field, the temperature distribution, and the mass concentration distribution in a fluid-saturated porous medium. The related numerical results have demonstrated that (1) the effects of both medium permeability inhomogeneity and medium thermal conductivity inhomogeneity are significant on the pore-fluid convective flow and the species concentration distribution in the porous medium; (2) the effect of medium thermal conductivity inhomogeneity is dramatic on the temperature distribution in the porous medium, but the effect of medium permeability inhomogeneity on the temperature distribution may be considerable, depending on the Rayleigh number involved in the analysis; (3) if the coupling effect between pore-fluid flow and mass transport is weak, the effect of the Lewis number is negligible on the pore-fluid convective flow and temperature distribution, hut it is significant on the species concentration distribution in the medium.
Resumo:
A new model proposed for the gasification of chars and carbons incorporates features of the turbostratic nanoscale structure that exists in such materials. The model also considers the effect of initial surface chemistry and different reactivities perpendicular to the edges and to the faces of the underlying crystallite planes comprising the turbostratic structure. It may be more realistic than earlier models based on pore or grain structure idealizations when the carbon contains large amounts of crystallite matter. Shrinkage of the carbon particles in the chemically controlled regime is also possible due to the random complete gasification of crystallitic planes. This mechanism can explain observations in the literature of particle size reduction. Based on the model predictions, both initial surface chemistry and the number of stacked planes in the crystallites strongly influence the reactivity and particle shrinkage. Its test results agree well with literature data on the air-oxidation of Spherocarb and show that it accurately predicts the variation of particle size with conversion. Model parameters are determined entirely from rate measurements.
Resumo:
Analytical electron microscopy was used to measure the composition of grain boundaries (GBs) and interconstituent boundaries (IBs) of X52 pipeline steel using specimens about 40-60 nm in thickness. All elements of interest were examined with the exception of carbon. With this caveat; there was no segregation at proeutectoid ferrite GBs. This indicated that the commonly expected species S and P are not responsible for preferential corrosion of GBs during intergranular stress corrosion cracking of pipeline steels. Manganese was the only species measured to segregate at the IBs. Manganese segregated to the IBs between proeutectoid ferrite and pearlitic cementite, and desegregated from IBs between proeutectoid ferrite and pearlitic ferrite. The pearlitic cementite was Mn rich. There was no Mn segregation at the IBs between pearlitic ferrite and pearlitic cementite. The pattern of Mn segregation could be explained in terms of diffusion in the process zone ahead of the pearlite during the austenite to pearlite transformation and diffusion in the IBs between the proeutectoid ferrite and pearlite. (C) 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of increasing the amount of added grain refiner on grain size and morphology has been investigated for a range of hypoeutectic Al-Si alloys. The results show a transition in grain size at a silicon concentration of about 3 wt% in unrefined alloys; the grain size decreasing with silicon content before the transition, and increasing beyond the transition point. A change in morphology also occurs with increased silicon content. The addition of grain refiner leads to greater refinement for silicon contents below the transition point than for those contents above the transition point, while the transition point seems to remain unchanged. The slope of the grain size versus silicon content curve after the transition seems to be unaffected by the degree of grain refinement. The results are related to the competitive processes of nucleation and constitutional effects during growth and their impact on nucleation kinetics. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Plant architecture has been neglected in most studies of biomass allocation in crops. To help redress this situation for grain sorghum (Sorghum bicolor (L.) Moench), we used a 3D digitiser to measure the dimensions and orientations of vegetative and reproductive structures and derived thermal time-based functions for architectural changes during morphogenesis. Our plants, which were grown in a greenhouse, controlled environment cabinets and the field, covered a large, three-fold, size range when mature. This allowed us to detect some general architectural relationships and to fit morphogenetic functions common across the size range we observed. For example, the relationship between the lengths of successive fully-expanded leaves within a plant was nearly constant for all plants. The lengths of existing leaf blades were accurate predictors of the lengths of up to six subsequently-formed blades in our plants. Similar constant relationships were detected for internode lengths in the panicle and for heights above ground of the collars of successive leaves, even though these traits varied a lot between growth conditions. We suggest that such architectural relationships may be used to link the effect of previous growth conditions to future growth potential, and in that way to predict future partitioning. Our results provide the basis for a preliminary model of sorghum morphogenesis which could eventually become useful in conjunction with crop models by allowing resource acquisition to be related to changes in plant architecture during development. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We describe a sample of 13 bright (18.5 < B-J < 20.1), compact galaxies at low redshift (0.05 < z < 0.21) behind the Fornax Cluster. These galaxies are unresolved on UK Schmidt sky survey plates, and so they would be missing from most galaxy catalogs compiled from this material. The objects were found during initial observations of The Fornax Spectroscopic Survey. This project is using the Two-degree Field spectrograph on the Anglo-Australian Telescope to obtain spectra for a complete sample of all 14,000 objects, stellar and nonstellar, with 16.5 < B-J < 19.7, in a 12 deg(2) area centered on the Fornax Cluster of galaxies. The surface density of compact galaxies with magnitudes 16.5 < B-J < 19.7 is 7 +/- 3 deg(-2), representing 2.8% +/- 1.6% of all local (z < 0.2) galaxies to this limit. There are 12 +/- 3 deg(-2) with 16.5 < B-J < 20.2. They are luminous (-21.5 < M-B < -18.0, for H-o = 50 km s(-1) Mpc(-1)), and most have strong emission lines (H alpha equivalent widths of 40-200 Angstrom) and small sizes typical of luminous H II galaxies and compact narrow emission line galaxies. Four out of 13 have red colors and early-type spectra, and so they are unlikely to have been detected in any previous surveys.
Resumo:
In this paper, a solution method is presented to deal with fully coupled problems between medium deformation, pore-fluid flow and heat transfer in fluid-saturated porous media having supercritical Rayleigh numbers. To validate the present solution method, analytical solutions to a benchmark problem are derived for some special cases. After the solution method is validated, a numerical study is carried out to investigate the effects of medium thermoelasticity on high Rayleigh number steady-state heat transfer and mineralization in fluid-saturated media when they are heated from below. The related numerical results have demonstrated that: (1) medium thermoelasticity has a little influence on the overall pattern of convective pore-fluid flow, but it has a considerable effect on the localization of medium deformation, pore-fluid flow, heat transfer and mineralization in a porous medium, especially when the porous medium is comprised of soft rock masses; (2) convective pore-fluid flow plays a very important role in the localization of medium deformation, heat transfer and mineralization in a porous medium. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The purpose of the present investigation was to gain an understanding of the nature of the carbon contamination on the surface of standard steel transmission electron spectroscopy (TEM) specimens, the effect of exposure of a clean specimen to normal laboratory air, and the efficacy of plasma-cleaning treatments. This knowledge is a necessary prerequisite to the development of appropriate specimen preparation and/or specimen cleaning methods. X-ray photoelectron spectroscopy in combination with argon ion beam profiling was used to characterize the specimen surfaces of X65 steel and 316 stainless steel. The only clean carbon-free surface obtained was that during argon etching of the sample in the surface analysis chamber. Any exposure of a previously cleaned sample to laboratory air resulted in a rapid carbon (hydrocarbon) contamination of the sample surface and the development of surface oxidation, Plasma cleaning with subsequent exposure of the specimen to the laboratory air also resulted in a carbon-contaminated surface. This suggests that procedures of preparation of TEM specimens of steels outside an ultrahigh vacuum chamber are unlikely to result in the lowering of contamination rates on specimens to levels where measurements for carbon in the grain boundaries are possible. What is needed is a cleaning system as an integral part of the specimen insertion system into the field-emission scanning transmission electron microscope. This cleaning could be carried out by argon ion etching. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Chromosome number reflects strong constraints on karyotype evolution, unescaped by the majority of animal taxa. Although there is commonly chromosomal polymorphism among closely related taxa, very large differences in chromosome number are rare. This study reports one of the most extensive chromosomal ranges yet reported for an animal genus. Apiomorpha Rubsaamen (Hemiptera: Coccoidea: Eriococcidae), an endemic Australian gall-inducing scale insect genus, exhibits an extraordinary 48-fold variation in chromosome number with diploid numbers ranging from 4 to about 192. Diploid complements of all other eriococcids examined to date range only from 6 to 28. Closely related species of Apiomorpha usually have very different karyotypes, to the extent that the variation within some species- groups is as great as that across the entire genus. There is extensive chromosomal variation among populations within 17 of the morphologically defined species of Apiomorpha indicating the existence of cryptic species-complexes. The extent and pattern of karyotypic variation suggests rapid chromosomal evolution via fissions and (or) fusions. It is hypothesized that chromosomal rearrangements in Apiomorpha species may be associated with these insects' tracking the radiation of their speciose host genus, Eucalyptus.