955 resultados para Genetic-markers
Resumo:
A variety of host immunogenetic factors appear to influence both an individual's susceptibility to infection with Mycobacterium leprae and the pathologic course of the disease. Animal models can contribute to a better understanding of the role of immunogenetics in leprosy through comparative studies helping to confirm the significance of various identified traits and in deciphering the underlying mechanisms that may be involved in expression of different disease related phenotypes. Genetically engineered mice, with specific immune or biochemical pathway defects, are particularly useful for investigating granuloma formation and resistance to infection and are shedding new light on borderline areas of the leprosy spectrum which are clinically unstable and have a tendency toward immunological complications. Though armadillos are less developed in this regard, these animals are the only other natural hosts of M. leprae and they present a unique opportunity for comparative study of genetic markers and mechanisms associable with disease susceptibility or resistance, especially the neurological aspects of leprosy. In this paper, we review the recent contributions of genetically engineered mice and armadillos toward our understanding of the immunogenetics of leprosy.
Resumo:
OBJECTIVE Interferon (IFN) signaling plays a crucial role in autoimmunity. Genetic variation in interferon regulatory factor 5 (IRF5), a major regulator of the type I interferon induction, has been associated with risk of developing several autoimmune diseases. In the current study we aimed to evaluate whether three sets of correlated IRF5 genetic variants, independently associated with SLE and with different functional roles, are involved in uveitis susceptibility and its clinical subphenotypes. METHODS Three IRF5 polymorphisms, rs2004640, rs2070197 and rs10954213, representative of each group, were genotyped using TaqMan® allelic discrimination assays in a total of 263 non-anterior uveitis patients and 724 healthy controls of Spanish origin. RESULTS A clear association between two of the three analyzed genetic variants, rs2004640 and rs10954213, and the absence of macular edema was observed in the case/control analysis (P FDR =5.07E-03, OR=1.48, CI 95%=1.14-1.92 and P FDR =3.37E-03, OR=1.54, CI 95%=1.19-2.01, respectively). Consistently, the subphenotype analysis accordingly with the presence/absence of this clinical condition also reached statistical significance (rs2004640: P=0.037, OR=0.69, CI 95%=0.48-0.98; rs10954213: P=0.030, OR=0.67, CI 95%=0.47-0.96), thus suggesting that both IRF5 genetic variants are specifically associated with the lack of macular edema in uveitis patients. CONCLUSION Our results clearly showed for the first time that two functional genetic variants of IRF5 may play a role in the development of macular edema in non-anterior uveitis patients. Identifying genetic markers for macular edema could lead to the possibility of developing novel treatments or preventive therapies.
Resumo:
Peripheral T-cell lymphomas (PTCLs) are heterogeneous and uncommon malignancies characterized by a usually aggressive clinical course. The current World Health Organization (WHO) classification delineates many entities grouped according to the clinical presentation as predominantly leukemic, cutaneous, extranodal, or nodal diseases. Yet, few genetic lesions serve as entity-defining markers. Using high-throughput methods, new recurrent genetic and molecular alterations are being discovered that are expected to refine the current classification and serve as diagnostic genetic markers and targets for novel therapies. There is increasing evidence that certain cellular subsets, in particular follicular helper T cells and gamma delta T cells, represent important defining markers and/or determinants of the biology of certain entities; nevertheless, the cellular derivation of many PTCL entities remains poorly characterized and there is evidence of plasticity in terms of cellular derivation (alpha-beta, gamma-delta, natural killer [NK]) especially in several extranodal entities with a cytotoxic profile. While most clonal NK/T-cell proliferations are in general highly malignant, some more indolent forms of NK or T-cell lympho-proliferations are being identified.
Resumo:
For many applications in population genetics, codominant simple sequence repeats (SSRs) may have substantial advantages over dominant anonymous markers such as amplified fragment length polymorphisms (AFLPs). In high polyploids, however, allele dosage of SSRs cannot easily be determined and alleles are not easily attributable to potentially diploidized loci. Here, we argue that SSRs may nonetheless be better than AFLPs for polyploid taxa if they are analyzed as effectively dominant markers because they are more reliable and more precise. We describe the transfer of SSRs developed for diploid Mercurialis huetii to the clonal dioecious M. perennis. Primers were tested on a set of 54 male and female plants from natural decaploid populations. Eight of 65 tested loci produced polymorphic fragments. Binary profiles from 4 different scoring routines were used to define multilocus lineages (MLLs). Allowing for fragment differences within 1 MLL, all analyses revealed the same 14 MLLs without conflicting with merigenet, sex, or plot assignment. For semiautomatic scoring, a combination of as few as 2 of the 4 most polymorphic loci resulted in unambiguous discrimination of clones. Our study demonstrates that microsatellite fingerprinting of polyploid plants is a cost efficient and reliable alternative to AFLPs, not least because fewer loci are required than for diploids.
Resumo:
Sex-biased dispersal is an almost ubiquitous feature of mammalian life history, but the evolutionary causes behind these patterns still require much clarification. A quarter of a century since the publication of seminal papers describing general patterns of sex-biased dispersal in both mammals and birds, we review the advances in our theoretical understanding of the evolutionary causes of sex-biased dispersal, and those in statistical genetics that enable us to test hypotheses and measure dispersal in natural populations. We use mammalian examples to illustrate patterns and proximate causes of sex-biased dispersal, because by far the most data are available and because they exhibit an enormous diversity in terms of dispersal strategy, mating and social systems. Recent studies using molecular markers have helped to confirm that sex-biased dispersal is widespread among mammals and varies widely in direction and intensity, but there is a great need to bridge the gap between genetic information, observational data and theory. A review of mammalian data indicates that the relationship between direction of sex-bias and mating system is not a simple one. The role of social systems emerges as a key factor in determining intensity and direction of dispersal bias, but there is still need for a theoretical framework that can account for the complex interactions between inbreeding avoidance, kin competition and cooperation to explain the impressive diversity of patterns.
Resumo:
Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48,629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34,014 SNPs across species, with a Ka /Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28,236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes.
Resumo:
Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4-7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination.
Resumo:
A Swiss frontotemporal dementia (FTD) kindred with extrapyramidal-like features and without motor neuron disease shows a brain pathology with ubiquitin-positive but tau-negative inclusions. Tau and neurofilament modifications are now studied here in three recently deceased family members. No major and specific decrease of tau was observed as described by others in, e.g., sporadic cases of FTD with absence of tau-positive inclusions. However, a slight decrease of tau, neurofilament, and synaptic proteins, resulting from frontal atrophy was detected. In parallel, polymorphic markers on chromosome 17q21-22, the centromeric region of chromosome 3 and chromosome 9, were tested. Haplotype analysis showed several recombination events for chromosomes 3 and 17, but patients shared a haplotype on chromosome 9q21-22. However as one of the patients exhibited Alzheimer and vascular dementia pathology with uncertain concomitant FTD, this locus is questionable. Altogether, these data indicate principally that the Swiss kindred is unlinked to locus 17q21-22, and that tau is not at the origin of FTD in this family.
Resumo:
OBJECTIVES: Genomewide association studies (GWAS) have identified clear evidence of genetic markers for nicotine dependence. Other smoking phenotypes have been tested, but the results are less consistent. The tendency to relapse versus the ability to maintain long-term abstinence has received little attention in genetic studies; thus, our aim was to provide a better biological understanding of this phenotype through the identification of genetic loci associated with smoking relapse. METHODS: We carried out a GWAS on data from two European population-based collections, including a total of 835 cases (relapsers) and 990 controls (abstainers). Top-ranked findings from the discovery phase were tested for replication in two additional independent European population-based cohorts. RESULTS: Of the seven top markers from the discovery phase, none were consistently associated with smoking relapse across all samples and none reached genomewide significance. A single-nucleotide polymorphism rs1008509, within the Xylosyltransferase II (XYLT2) gene, was suggestively associated with smoking relapse in the discovery phase (β=-0.504; P=5.6E-06) and in the first replication sample (ALSPAC) (β=-0.27; P=0.004; n=1932), but not in the second sample (KORA) (β=0.19; P=0.138; n=912). We failed to identify an association between loci implicated previously in other smoking phenotypes and smoking relapse. CONCLUSION: Although no genomewide significant findings emerged from this study, we found that loci implicated in other smoking phenotypes were not associated with smoking relapse, which suggests that the neurobiology of smoking relapse and long-term abstinence may be distinct from biological mechanisms implicated in the development of nicotine dependence.
Resumo:
Viruses have evolved strategies to overcome the antiviral effects of the host at different levels. Besides specific defence mechanisms, the host responds to viral infection via the interferon pathway and also by RNA interference (RNAi). However, several viruses have been identified that suppress RNAi. We addressed the question of whether hepatitis C virus (HCV) suppresses RNAi, using cell lines constitutively expressing green fluorescent protein (GFP) and inducibly expressing HCV proteins. It was found that short interfering RNA-mediated GFP gene silencing was inhibited when the entire HCV polyprotein was expressed. Further studies showed that HCV structural proteins, and in particular envelope protein 2 (E2), were responsible for this inhibition. Co-precipitation assays demonstrated that E2 bound to Argonaute-2 (Ago-2), a member of the RNA-induced silencing complex, RISC. Thus, HCV E2 that interacts with Ago-2 is able to suppress RNAi.
Resumo:
PURPOSE: Most RB1 mutations are unique and distributed throughout the RB1 gene. Their detection can be time-consuming and the yield especially low in cases of conservatively-treated sporadic unilateral retinoblastoma (Rb) patients. In order to identify patients with true risk of developing Rb, and to reduce the number of unnecessary examinations under anesthesia in all other cases, we developed a universal sensitive, efficient and cost-effective strategy based on intragenic haplotype analysis. METHODS: This algorithm allows the calculation of the a posteriori risk of developing Rb and takes into account (a) RB1 loss of heterozygosity in tumors, (b) preferential paternal origin of new germline mutations, (c) a priori risk derived from empirical data by Vogel, and (d) disease penetrance of 90% in most cases. We report the occurrence of Rb in first degree relatives of patients with sporadic Rb who visited the Jules Gonin Eye Hospital, Lausanne, Switzerland, from January 1994 to December 2006 compared to expected new cases of Rb using our algorithm. RESULTS: A total of 134 families with sporadic Rb were enrolled; testing was performed in 570 individuals and 99 patients younger than 4 years old were identified. We observed one new case of Rb. Using our algorithm, the cumulated total a posteriori risk of recurrence was 1.77. CONCLUSIONS: This is the first time that linkage analysis has been validated to monitor the risk of recurrence in sporadic Rb. This should be a useful tool in genetic counseling, especially when direct RB1 screening for mutations leaves a negative result or is unavailable.
Resumo:
The role that kin selection might play in the evolution of lekking in birds remains controversial. Recent molecular data suggest that males displaying on leks are related. Here we investigated the genetic structure and pattern of relatedness on leks of a declining population of capercaillie (Tetrao urogallus) using microsatellite genetic markers. Since the species is highly sensitive to disturbance, we adopted a non-invasive method by using faecal samples collected in the field. Based on a dataset of 50 males distributed in 6 sub-populations, we found significant genetic structuring among sub-populations, and a significant pattern of isolation by distance among leks. Estimates of relatedness showed that males displaying on the same lek were related, even when controlling for the effects of genetical differentiation among sub-populations. In addition, the frequency distribution of relatedness values indicated that leks contain a mixture of close kin and unrelated individuals (34 and 66%, respectively). This pattern is consistent with the hypothesis that leks often contain kin associations, which might be due to very restricted dispersal of some of the males or to joint dispersal of kin. The results are discussed with respect to their implication for the conservation of endangered populations.
Resumo:
Human genetics has progressed at an unprecedented pace during the past 10 years. DNA microarrays currently allow screening of the entire human genome with high level of coverage and we are now entering the era of high-throughput sequencing. These remarkable technical advances are influencing the way medical research is conducted and have boosted our understanding of the structure of the human genome as well as of disease biology. In this context, it is crucial for clinicians to understand the main concepts and limitations of modern genetics. This review will describe key concepts in genetics, including the different types of genetic markers in the human genome, review current methods to detect DNA variation, describe major online public databases in genetics, explain key concepts in statistical genetics and finally present commonly used study designs in clinical and epidemiological research. This review will therefore concentrate on human genetic variation analysis.
Resumo:
Because of their beneficial impact on forest ecosystems, European red wood ants (Formica rufa group) are protected by law in many European countries and are considered to be among the most reliable bioindicators of forest stability. However, their taxonomy has been much debated and, unfortunately, it is too often neglected. This happens mainly because the morphology-based method for species delimitation requires lots of time and experience. We therefore employed 9 microsatellite loci and mitochondrial DNA (COI gene) to verify the power of genetic markers for red wood ant species delimitation and to investigate the cryptic diversity of these ants within the Eastern Swiss Alps. We analyzed 83 nests belonging to all red wood ant species that occur in the Swiss National Park area. Genetic data indicated that these species represent different genetic pools. Moreover, results showed that Formica aquilonia YARROW, 1955 and F. paralugubris SEIFERT, 1996 often hybridize within the Park, confirming that these two species are genetically very close and could have diverged only recently. Nevertheless, microsatellites also revealed that one entire population, located in the Minger Valley and morphologically identified as F. lugubris ZETTERSTEDT, 1838, is genetically different to all other analyzed F. lugubris populations found within the same area and to other red wood ant species. These findings, confirmed by mitochondrial DNA analyses, suggest the existence of a new cryptic species within the Eastern Swiss Alps. This putative cryptic species has been provisionally named F. lugubris-A2. These results have a great importance for future conservation plans, monitoring and evolutionary studies on these protected ants.
Resumo:
The utility of sequencing a second highly variable locus in addition to the spa gene (e.g., double-locus sequence typing [DLST]) was investigated to overcome limitations of a Staphylococcus aureus single-locus typing method. Although adding a second locus seemed to increase discriminatory power, it was not sufficient to definitively infer evolutionary relationships within a single multilocus sequence type (ST-5).