938 resultados para Generalized Gaussian-noise
Resumo:
We address the problem of speech enhancement using a risk- estimation approach. In particular, we propose the use the Stein’s unbiased risk estimator (SURE) for solving the problem. The need for a suitable finite-sample risk estimator arises because the actual risks invariably depend on the unknown ground truth. We consider the popular mean-squared error (MSE) criterion first, and then compare it against the perceptually-motivated Itakura-Saito (IS) distortion, by deriving unbiased estimators of the corresponding risks. We use a generalized SURE (GSURE) development, recently proposed by Eldar for MSE. We consider dependent observation models from the exponential family with an additive noise model,and derive an unbiased estimator for the risk corresponding to the IS distortion, which is non-quadratic. This serves to address the speech enhancement problem in a more general setting. Experimental results illustrate that the IS metric is efficient in suppressing musical noise, which affects the MSE-enhanced speech. However, in terms of global signal-to-noise ratio (SNR), the minimum MSE solution gives better results.
Resumo:
We study the phenomenon of electromagnetically induced transparency and absorption (EITA) using a control laser with a Laguerre-Gaussian (LG) profile instead of the usual Gaussian profile, and observe significant narrowing of the resonance widths. Aligning the probe beam to the central hole in the doughnut-shaped LG control beam allows simultaneously a strong control intensity required for high signal-to-noise ratio and a low intensity in the probe region required to get narrow resonances. Experiments with an expanded Gaussian control and a second-order LG control show that transit time and orbital angular momentum do not play a significant role. This explanation is borne out by a density-matrix analysis with a radially varying control Rabi frequency. We observe these resonances using degenerate two-level transitions in the D-2 line of Rb-87 in a room temperature vapor cell, and an EIA resonance with width up to 20 times below the natural linewidth for the F = 2 -> F' = 3 transition. Thus the use of LG beams should prove advantageous in all applications of EITA and other kinds of pump-probe spectroscopy as well.
Resumo:
We consider the MIMO X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. Both the transmitters and receivers are equipped with multiple antennas. First, we derive an upper bound on the sum-rate capacity of the MIMO XC under individual power constraint at each transmitter. The sum-rate capacity of the two-user multiple access channel (MAC) that results when receiver cooperation is assumed forms an upper bound on the sum-rate capacity of the MIMO XC. We tighten this bound by considering noise correlation between the receivers and deriving the worst noise covariance matrix. It is shown that the worst noise covariance matrix is a saddle-point of a zero-sum, two-player convex-concave game, which is solved through a primal-dual interior point method that solves the maximization and the minimization parts of the problem simultaneously. Next, we propose an achievable scheme which employs dirty paper coding at the transmitters and successive decoding at the receivers. We show that the derived upper bound is close to the achievable region of the proposed scheme at low to medium SNRs.
Binaural Signal Processing Motivated Generalized Analytic Signal Construction and AM-FM Demodulation
Resumo:
Binaural hearing studies show that the auditory system uses the phase-difference information in the auditory stimuli for localization of a sound source. Motivated by this finding, we present a method for demodulation of amplitude-modulated-frequency-modulated (AM-FM) signals using a ignal and its arbitrary phase-shifted version. The demodulation is achieved using two allpass filters, whose impulse responses are related through the fractional Hilbert transform (FrHT). The allpass filters are obtained by cosine-modulation of a zero-phase flat-top prototype halfband lowpass filter. The outputs of the filters are combined to construct an analytic signal (AS) from which the AM and FM are estimated. We show that, under certain assumptions on the signal and the filter structures, the AM and FM can be obtained exactly. The AM-FM calculations are based on the quasi-eigenfunction approximation. We then extend the concept to the demodulation of multicomponent signals using uniform and non-uniform cosine-modulated filterbank (FB) structures consisting of flat bandpass filters, including the uniform cosine-modulated, equivalent rectangular bandwidth (ERB), and constant-Q filterbanks. We validate the theoretical calculations by considering application on synthesized AM-FM signals and compare the performance in presence of noise with three other multiband demodulation techniques, namely, the Teager-energy-based approach, the Gabor's AS approach, and the linear transduction filter approach. We also show demodulation results for real signals.
Resumo:
Interaction between the lattice and the orbital degrees of freedom not only makes rare-earth nickelates unusually ``bad metal,'' but also introduces a temperature-driven insulator-metal phase transition. Here we investigate this insulator-metal phase transition in thin films of SmNiO3 using the slow time-dependent fluctuations (noise) in resistivity. The normalized magnitude of noise is found to be extremely large, being nearly eight orders of magnitude higher than thin films of common disordered metallic systems, and indicates electrical conduction via classical percolation in a spatially inhomogeneous medium. The higher-order statistics of the fluctuations indicate a strong non-Gaussian component of noise close to the transition, attributing the inhomogeneity to the coexistence of the metallic and insulating phases. Our experiment offers insight into the impact of lattice-orbital coupling on the microscopic mechanism of electron transport in the rare-earth nickelates.
On Precoding for Constant K-User MIMO Gaussian Interference Channel With Finite Constellation Inputs
Resumo:
This paper considers linear precoding for the constant channel-coefficient K-user MIMO Gaussian interference channel (MIMO GIC) where each transmitter-i (Tx-i) requires the sending of d(i) independent complex symbols per channel use that take values from fixed finite constellations with uniform distribution to receiver-i (Rx-i) for i = 1, 2, ..., K. We define the maximum rate achieved by Tx-i using any linear precoder as the signal-to-noise ratio (SNR) tends to infinity when the interference channel coefficients are zero to be the constellation constrained saturation capacity (CCSC) for Tx-i. We derive a high-SNR approximation for the rate achieved by Tx-i when interference is treated as noise and this rate is given by the mutual information between Tx-i and Rx-i, denoted as I(X) under bar (i); (Y) under bar (i)]. A set of necessary and sufficient conditions on the precoders under which I(X) under bar (i); (Y) under bar (i)] tends to CCSC for Tx-i is derived. Interestingly, the precoders designed for interference alignment (IA) satisfy these necessary and sufficient conditions. Furthermore, we propose gradient-ascentbased algorithms to optimize the sum rate achieved by precoding with finite constellation inputs and treating interference as noise. A simulation study using the proposed algorithms for a three-user MIMO GIC with two antennas at each node with d(i) = 1 for all i and with BPSK and QPSK inputs shows more than 0.1-b/s/Hz gain in the ergodic sum rate over that yielded by precoders obtained from some known IA algorithms at moderate SNRs.
Resumo:
Generalized spatial modulation (GSM) uses n(t) transmit antenna elements but fewer transmit radio frequency (RF) chains, n(rf). Spatial modulation (SM) and spatial multiplexing are special cases of GSM with n(rf) = 1 and n(rf) = n(t), respectively. In GSM, in addition to conveying information bits through n(rf) conventional modulation symbols (for example, QAM), the indices of the n(rf) active transmit antennas also convey information bits. In this paper, we investigate GSM for large-scale multiuser MIMO communications on the uplink. Our contributions in this paper include: 1) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and 2) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10(-3). Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.
Resumo:
This paper derives outer bounds on the sum rate of the K-user MIMO Gaussian interference channel (GIC). Three outer bounds are derived, under different assumptions of cooperation and providing side information to receivers. The novelty in the derivation lies in the careful selection of side information, which results in the cancellation of the negative differential entropy terms containing signal components, leading to a tractable outer bound. The overall outer bound is obtained by taking the minimum of the three outer bounds. The derived bounds are simplified for the MIMO Gaussian symmetric IC to obtain outer bounds on the generalized degrees of freedom (GDOF). The relative performance of the bounds yields insight into the performance limits of multiuser MIMO GICs and the relative merits of different schemes for interference management. These insights are confirmed by establishing the optimality of the bounds in specific cases using an inner bound on the GDOF derived by the authors in a previous work. It is also shown that many of the existing results on the GDOF of the GIC can be obtained as special cases of the bounds, e. g., by setting K = 2 or the number of antennas at each user to 1.
Resumo:
Fermi gases with generalized Rashba spin-orbit coupling induced by a synthetic gauge field have the potential of realizing many interesting states, such as rashbon condensates and topological phases. Here, we address the key open problem of the fluctuation theory of such systems and demonstrate that beyond-Gaussian effects are essential to capture the finite temperature physics of such systems. We obtain their phase diagram by constructing an approximate non-Gaussian theory. We conclusively establish that spin-orbit coupling can enhance the exponentially small transition temperature (T-c) of a weakly attracting superfluid to the order of the Fermi temperature, paving a pathway towards high T-c superfluids.
Resumo:
In this paper, the Gaussian many-to-one X channel (XC), which is a special case of general multiuser XC, is studied. In the Gaussian many-to-one XC, communication links exist between all transmitters and one of the receivers, along with a communication link between each transmitter and its corresponding receiver. As per the XC assumption, transmission of messages is allowed on all the links of the channel. This communication model is different from the corresponding manyto- one interference channel (IC). Transmission strategies, which involve using Gaussian codebooks and treating interference from a subset of transmitters as noise, are formulated for the above channel. Sum-rate is used as the criterion of optimality for evaluating the strategies. Initially, a 3 x 3 many-to-one XC is considered and three transmission strategies are analyzed. The first two strategies are shown to achieve sum-rate capacity under certain channel conditions. For the third strategy, a sum-rate outer bound is derived and the gap between the outer bound and the achieved rate is characterized. These results are later extended to the K x K case. Next, a region in which the many-to-one XC can be operated as a many-to-one IC without the loss of sum-rate is identified. Furthermore, in the above region, it is shown that using Gaussian codebooks and treating interference as noise achieve a rate point that is within K/2 -1 bits from the sum-rate capacity. Subsequently, some implications of the above results to the Gaussian many-to-one IC are discussed. Transmission strategies for the many-to-one IC are formulated, and channel conditions under which the strategies achieve sum-rate capacity are obtained. A region where the sum-rate capacity can be characterized to within K/2 -1 bits is also identified. Finally, the regions where the derived channel conditions are satisfied for each strategy are illustrated for a 3 x 3 many-to-one XC and the corresponding many-to-one IC.
Resumo:
Statistical model-based methods are presented for the reconstruction of autocorrelated signals in impulsive plus continuous noise environments. Signals are modelled as autoregressive and noise sources as discrete and continuous mixtures of Gaussians, allowing for robustness in highly impulsive and non-Gaussian environments. Markov Chain Monte Carlo methods are used for reconstruction of the corrupted waveforms within a Bayesian probabilistic framework and results are presented for contaminated voice and audio signals.
Resumo:
The first-passage time of Duffing oscillator under combined harmonic and white-noise excitations is studied. The equation of motion of the system is first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. Numerical results for two resonant cases with several sets of parameter values are obtained and the analytical results are verified by using those from digital simulation.
Resumo:
A procedure for designing the optimal bounded control of strongly non-linear oscillators under combined harmonic and white-noise excitations for minimizing their first-passage failure is proposed. First, a stochastic averaging method for strongly non-linear oscillators under combined harmonic and white-noise excitations using generalized harmonic functions is introduced. Then, the dynamical programming equations and their boundary and final time conditions for the control problems of maximizing reliability and of maximizing mean first-passage time are formulated from the averaged Ito equations by using the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraint. Finally, the conditional reliability function, the conditional probability density and mean of the first-passage time of the optimally controlled system are obtained from solving the backward Kolmogorov equation and Pontryagin equation. An example is given to illustrate the proposed procedure and the results obtained are verified by using those from digital simulation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
14 p.
Resumo:
Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.
In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.
The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.
In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.
The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.
Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.