949 resultados para Gaussian noise


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method to reduce the noise power in far-field pattern without modifying the desired signal is proposed. Therefore, an important signal-to-noise ratio improvement may be achieved. The method is used when the antenna measurement is performed in planar near-field, where the recorded data are assumed to be corrupted with white Gaussian and space-stationary noise, because of the receiver additive noise. Back-propagating the measured field from the scan plane to the antenna under test (AUT) plane, the noise remains white Gaussian and space-stationary, whereas the desired field is theoretically concentrated in the aperture antenna. Thanks to this fact, a spatial filtering may be applied, cancelling the field which is located out of the AUT dimensions and which is only composed by noise. Next, a planar field to far-field transformation is carried out, achieving a great improvement compared to the pattern obtained directly from the measurement. To verify the effectiveness of the method, two examples will be presented using both simulated and measured near-field data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two different methods to reduce the noise power in the far-field pattern of an antenna as measured in cylindrical near-field (CNF) are proposed. Both methods are based on the same principle: the data recorded in the CNF measurement, assumed to be corrupted by white Gaussian and space-stationary noise, are transformed into a new domain where it is possible to filter out a portion of noise. Those filtered data are then used to calculate a far-field pattern with less noise power than that one obtained from the measured data without applying any filtering. Statistical analyses are carried out to deduce the expressions of the signal-to-noise ratio improvement achieved with each method. Although the idea of the two alternatives is the same, there are important differences between them. The first one applies a modal filtering, requires an oversampling and improves the far-field pattern in all directions. The second method employs a spatial filtering on the antenna plane, does not require oversampling and the far-field pattern is only improved in the forward hemisphere. Several examples are presented using both simulated and measured near-field data to verify the effectiveness of the methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ALICE is one of four major experiments of particle accelerator LHC installed in the European laboratory CERN. The management committee of the LHC accelerator has just approved a program update for this experiment. Among the upgrades planned for the coming years of the ALICE experiment is to improve the resolution and tracking efficiency maintaining the excellent particles identification ability, and to increase the read-out event rate to 100 KHz. In order to achieve this, it is necessary to update the Time Projection Chamber detector (TPC) and Muon tracking (MCH) detector modifying the read-out electronics, which is not suitable for this migration. To overcome this limitation the design, fabrication and experimental test of new ASIC named SAMPA has been proposed . This ASIC will support both positive and negative polarities, with 32 channels per chip and continuous data readout with smaller power consumption than the previous versions. This work aims to design, fabrication and experimental test of a readout front-end in 130nm CMOS technology with configurable polarity (positive/negative), peaking time and sensitivity. The new SAMPA ASIC can be used in both chambers (TPC and MCH). The proposed front-end is composed of a Charge Sensitive Amplifier (CSA) and a Semi-Gaussian shaper. In order to obtain an ASIC integrating 32 channels per chip, the design of the proposed front-end requires small area and low power consumption, but at the same time requires low noise. In this sense, a new Noise and PSRR (Power Supply Rejection Ratio) improvement technique for the CSA design without power and area impact is proposed in this work. The analysis and equations of the proposed circuit are presented which were verified by electrical simulations and experimental test of a produced chip with 5 channels of the designed front-end. The measured equivalent noise charge was <550e for 30mV/fC of sensitivity at a input capacitance of 18.5pF. The total core area of the front-end was 2300?m × 150?m, and the measured total power consumption was 9.1mW per channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore the dependence of performance measures, such as the generalization error and generalization consistency, on the structure and the parameterization of the prior on `rules', instanced here by the noisy linear perceptron. Using a statistical mechanics framework, we show how one may assign values to the parameters of a model for a `rule' on the basis of data instancing the rule. Information about the data, such as input distribution, noise distribution and other `rule' characteristics may be embedded in the form of general gaussian priors for improving net performance. We examine explicitly two types of general gaussian priors which are useful in some simple cases. We calculate the optimal values for the parameters of these priors and show their effect in modifying the most probable, MAP, values for the rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for one-dimensional Gaussian Processes. The analysis is carried out emphasising the effects induced on the bounds by the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on the tightness of the bounds are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacy of a specially constructed Gallager-type error-correcting code to communication in a Gaussian channel is examined. The construction is based on the introduction of complex matrices, used in both encoding and decoding, which comprise sub-matrices of cascading connection values. The finite-size effects are estimated for comparing the results with the bounds set by Shannon. The critical noise level achieved for certain code rates and infinitely large systems nearly saturates the bounds set by Shannon even when the connectivity used is low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the dynamics of on-line learning in multilayer neural networks where training examples are sampled with repetition and where the number of examples scales with the number of network weights. The analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations for a set of macroscopic variables from which both training and generalization errors can be calculated. We focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers are introduced to improve the network performance. The dependence of the dynamics on the noise level, with and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in structurally unrealizable scenarios. The theoretical results show good agreement with those obtained by computer simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a greedy Bayesian experimental design criterion for heteroscedastic Gaussian process models. The criterion is based on the Fisher information and is optimal in the sense of minimizing parameter uncertainty for likelihood based estimators. We demonstrate the validity of the criterion under different noise regimes and present experimental results from a rabies simulator to demonstrate the effectiveness of the resulting approximately optimal designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical first order calculation of the impact of Gaussian white noise on a novel single Mach-Zehnder Interferometer demodulation scheme for DQPSK reveals a constant Q factor ratio to the conventional scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of the reliability of systems which learn from data is a key issue to investigate thoroughly before the actual application of information processing techniques to real-world problems. Over the recent years Gaussian processes and Bayesian neural networks have come to the fore and in this thesis their generalisation capabilities are analysed from theoretical and empirical perspectives. Upper and lower bounds on the learning curve of Gaussian processes are investigated in order to estimate the amount of data required to guarantee a certain level of generalisation performance. In this thesis we analyse the effects on the bounds and the learning curve induced by the smoothness of stochastic processes described by four different covariance functions. We also explain the early, linearly-decreasing behaviour of the curves and we investigate the asymptotic behaviour of the upper bounds. The effect of the noise and the characteristic lengthscale of the stochastic process on the tightness of the bounds are also discussed. The analysis is supported by several numerical simulations. The generalisation error of a Gaussian process is affected by the dimension of the input vector and may be decreased by input-variable reduction techniques. In conventional approaches to Gaussian process regression, the positive definite matrix estimating the distance between input points is often taken diagonal. In this thesis we show that a general distance matrix is able to estimate the effective dimensionality of the regression problem as well as to discover the linear transformation from the manifest variables to the hidden-feature space, with a significant reduction of the input dimension. Numerical simulations confirm the significant superiority of the general distance matrix with respect to the diagonal one.In the thesis we also present an empirical investigation of the generalisation errors of neural networks trained by two Bayesian algorithms, the Markov Chain Monte Carlo method and the evidence framework; the neural networks have been trained on the task of labelling segmented outdoor images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the statistics of a vector Manakov soliton in the presence of additive Gaussian white noise. The adiabatic perturbation theory for a Manakov soliton yields a stochastic Langevin system which we analyse via the corresponding Fokker-Planck equation for the probability density function (PDF) for the soliton parameters. We obtain marginal PDFs for the soliton frequency and amplitude as well as soliton amplitude and polarization angle. We also derive formulae for the variances of all soliton parameters and analyse their dependence on the initial values of polarization angle and phase. © 2006 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find the probability distribution of the fluctuating parameters of a soliton propagating through a medium with additive noise. Our method is a modification of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve consistently a fundamental problem of soliton propagation within the framework of noisy nonlinear Schrödinger equation. We then consider model modifications due to in-line (filtering, amplitude and phase modulation) control. It is examined how control elements change the error probability in optical soliton transmission. Even though a weak noise is considered, we are interested here in probabilities of error-causing large fluctuations which are beyond perturbation theory. We describe in detail a new phenomenon of soliton collapse that occurs under the combined action of noise, filtering and amplitude modulation. © 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models. © 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was performed on non-Gaussian statistics of an optical soliton in the presence of amplified spontaneous emission. An approach based on the Fokker-Planck equation was applied to study the optical soliton parameters in the presence of additive noise. The rigorous method not only allowed to reproduce and justify the classical Gordon-Haus formula but also led to new exact results.