981 resultados para GC-MS-SIM
Resumo:
We have developed a new method for single-drop microextraction (SDME) for the preconcentration of organochlorine pesticides (OCP) from complex matrices. It is based on the use of a silicone ring at the tip of the syringe. A 5 μL drop of n-hexane is applied to an aqueous extract containing the OCP and found to be adequate to preconcentrate the OCPs prior to analysis by GC in combination with tandem mass spectrometry. Fourteen OCP were determined using this technique in combination with programmable temperature vaporization. It is shown to have many advantages over traditional split/splitless injection. The effects of kind of organic solvent, exposure time, agitation and organic drop volume were optimized. Relative recoveries range from 59 to 117 %, with repeatabilities of <15 % (coefficient of variation) were achieved. The limits of detection range from 0.002 to 0.150 μg kg−1. The method was applied to the preconcentration of OCPs in fresh strawberry, strawberry jam, and soil.
Resumo:
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon>2.3%) and LS (organic carbon<2.3%). Themethod was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrixmatched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70–120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg−1 and from 11.41 to 79.23 μg kg−1, respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg−1 and the limits of quantification from 20.37 to 49.27 μg kg−1. In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg−1) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
Pesticides are among the most widely used chemicals in the world. Because of the widespread use of agricultural chemicals in food production, people are exposed to low levels of pesticide residues through their diets. Scientists do not yet have a total understanding of the health effects of these pesticide residues. This work aims to determine differences in terms of pesticide residue content in Portuguese strawberries grown using different agriculture practices. The Quick, Easy, Cheap, Effective, Rugged, and Safe sample preparation method was conducted and shown to have good performance for multiclass pesticides extraction in strawberries. The screening of 25 pesticides residue was performed by gas chromatography–tandem mass spectrometry. In quantitative validation, acceptable performances were achieved with recoveries of 70–120 and <12 % residual standard deviation for 25 pesticides. Good linearity was obtained for all the target compounds, with highly satisfactory repeatability. The limits of detection were in the range of 0.1–28 μg/kg. The method was applied to analyze strawberry samples from organic and integrated pest management (IPM) practices harvested in 2009–2010. The results showed the presence of fludioxonil, bifenthrin, mepanipyrim, tolylfluanid, cyprodinil, tetraconazole, and malathion when using IPM below the maximum residue levels.
Resumo:
Scientific evidence has shown an association between organochlorine compounds (OCC) exposure and human health hazards. Concerning this, OCC detection in human adipose samples has to be considered a public health priority. This study evaluated the efficacy of various solid-phase extraction (SPE) and cleanup methods for OCC determination in human adipose tissue. Octadecylsilyl endcapped (C18-E), benzenesulfonic acid modified silica cation exchanger (SA), poly (styrene-divinylbenzene (EN) and EN/RP18 SPE sorbents were evaluated. The relative sample cleanup provided by these SPE columns was evaluated using gas chromatography with electron capture detection (GC–ECD). The C18-E columns with strong homogenization were found to provide the most effective cleanup, removing the greatest amount of interfering substance, and simultaneously ensuring good analyte recoveries higher than 70%. Recoveries>70% with standard deviations (SD)<15% were obtained for all compounds under the selected conditions. Method detection limits were in the 0.003–0.009 mg/kg range. The positive samples were confirmed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The highest percentage found of the OCC in real samples corresponded to HCB, o,p′-DDT and methoxychlor, which were detected in 80 and 95% of samples analyzed respectively. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Environmental pollution continues to be an emerging study field, as there are thousands of anthropogenic compounds mixed in the environment whose possible mechanisms of toxicity and physiological outcomes are of great concern. Developing methods to access and prioritize the screening of these compounds at trace levels in order to support regulatory efforts is, therefore, very important. A methodology based on solid phase extraction followed by derivatization and gas chromatography-mass spectrometry analysis was developed for the assessment of four endocrine disrupting compounds (EDCs) in water matrices: bisphenol A, estrone, 17b-estradiol and 17a-ethinylestradiol. The study was performed, simultaneously, by two different laboratories in order to evaluate the robustness of the method and to increase the quality control over its application in routine analysis. Validation was done according to the International Conference on Harmonisation recommendations and other international guidelines with specifications for the GC-MS methodology. Matrix-induced chromatographic response enhancement was avoided by using matrix-standard calibration solutions and heteroscedasticity has been overtaken by a weighted least squares linear regression model application. Consistent evaluation of key analytical parameters such as extraction efficiency, sensitivity, specificity, linearity, limits of detection and quantification, precision, accuracy and robustness was done in accordance with standards established for acceptance. Finally, the application of the optimized method in the assessment of the selected analytes in environmental samples suggested that it is an expedite methodology for routine analysis of EDC residues in water matrices.
Resumo:
Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET),maximum excitation energy or “q” value (q), and isolationmass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit.Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.
Resumo:
A produção de vinho é uma actividade de elevada importância ao nível económico, ambiental e social. Como tal, a protecção da vinha e/ou da uva através da utilização de pesticidas assume um papel fundamental nesta actividade, permitindo um aumento no rendimento da produção. No entanto, a transferência destes compostos da uva para o vinho é inevitável, ocorrendo, na maioria dos casos, em quantidades reduzidas. Apesar de, geralmente, a quantidade de pesticidas que pode ser transferida para o vinho não apresentar problemas relevantes para a saúde pública, o desenvolvimento de metodologias que permitam garantir um controlo rigoroso da qualidade do vinho é de elevada importância. O controlo deste produto, assim como de qualquer produto alimentar, não deve ser de certa forma virtual, levando a uma desconfiança crescente do consumidor. Ao longo deste trabalho foram desenvolvidos dois métodos para a determinação de pesticidas em diferentes tipos de vinhos, por SPME-GC-MS/MS. O primeiro método desenvolvido visa a determinação de 8 pesticidas organofosforados e o segundo método permite a determinação de 7 pesticidas, 4 organoclorados e 3 dicarboximidas. Foram estudadas quatro matrizes diferentes: vinho branco do Douro, vinho tinto do Douro, vinho branco do Porto e vinho tinto do Porto. As metodologias adoptadas permitiram a obtenção de bons resultados, apesar das condições adoptadas não serem as mais vantajosas para alguns dos compostos estudados. Dada a complexidade das matrizes, a detecção por espectrometria de massa mostrou ser fundamental para a identificação inequívoca de cada um dos pesticidas. Verificaram-se, de um modo geral, bons resultados ao nível da linearidade, para as gamas de concentrações escolhidas, para os dois métodos. Obtiveram-se também bons resultados para os limites de detecção e quantificação, cujos valores se situam abaixo dos limites máximos de resíduos para as uvas, impostos pela regulamentação europeia, para a maioria dos compostos. No caso dos organofosforados, os limites de detecção variam entre 0,05 μg/L e 13,00 μg/L para os pesticidas clorpirifos-metilo e metidatião, respectivamente. Os limites de quantificação variam entre 0,18 μg/L e 43,32 μg/L, também para os pesticidas clorpirifos-metilo e metidatião. No que se refere ao método para os pesticidas organoclorados e dicarboximidas, foram calculados vários limites de detecção para cada composto, em cada matriz estudada, a partir das rectas de calibração diárias, resultando num conjunto de valores com variações significativas entre cada um, para o mesmo pesticida e na mesma matriz. No entanto, apenas os limites de quantificação foram validados, recorrendo-se aos estudos de repetibilidade e precisão intermédia. Obtiveram-se os seguintes limites de quantificação: captana 52,10 μg/L; clortalonil 20,95 μg/L; dicofol 4,37 μg/L; folpete 93,60 μg/L; iprodiona 274,70 μg/L; procimidona 76,04 μg/L e vinclozolina 10,03 μg/L. Os pesticidas metidatião e captana apresentam-se como os compostos mais problemáticos, uma vez que os limites de quantificação obtidos não permitem a garantia do cumprimento dos limites máximos de resíduos regulamentados. Demonstra-se também que, apesar do efeito de matriz ser significativo na determinação de todos os compostos analisados, o mesmo pode ser atenuado, procedendo-se às calibrações nas respectivas matrizes. Observaram-se variações significativas ao nível da resposta do equipamento ao longo do tempo, quer pela alteração das condições operatórias, quer pela decomposição de alguns compostos ao longo do tempo. Este efeito, evidenciado nos estudos das precisões intermédias e repetibilidades, levou à adopção de um método de validação diferente para a determinação de pesticidas organoclorados e dicarboximidas, recorrendo-se então a calibrações diárias e sequências de trabalho mais pequenas.
Resumo:
A SPME-GC-MS/MS method for the determination of eight organophosphorus pesticides (azinphos-methyl, chlorpyriphos, chlorpyriphos-methyl, diazinon, fenitrothion, fenthion, malathion, and methidathion) in still and fortified wine was developed. The extraction procedure is simple, solvent free, and without any sample pretreatment. Limits of detection (LOD) and quantitation (LOQ) values in the range 0.1–14.3 lg/L and 0.2–43.3 lg/L, respectively, were obtained. The LOQ values are below the maximum residue levels (MRLs) established by European Regulation for grapes, with the exception of methidathion. Coefficients of correlation (R2) higher than 0.99 were obtained for the majority of the pesticides, in all different wines analyzed.
Resumo:
The present work describes a solid-phase microextraction (SPME) gas chromatography_tandem mass spectrometry (MS/MS) method to quantify 24 pesticides in fortified white wine and fortified red wine. In this study “fortified wine” refers to a wine in which fermentation is arrested before completion by alcohol distillate addition, allowing sugar and alcoholic contents to be higher (around 80-100 g/L total sugars and 19-22% alcohol strength (v/v)). The analytical method showed good linearity, presenting correlation coefficients (R2) ≥ 0.989 for all compounds. Limits of detection (LOD) and quantitation (LOQ) in the ranges of 0.05-72.35 and 0.16-219.23 μg/L, respectively, were obtained. LOQs are below the maximum residue levels (MRL) set by European Regulation for grapes. The proposed method was applied to 17 commercial fortified wines. The analyzed pesticides were not detected in the wines tested.
Resumo:
A procedure for the determination of seven indicator PCBs in soils and sediments using microwave-assisted extraction (MAE) and headspace solid-phase microextraction (HS-SPME) prior to GC-MS/MS is described. Optimization of the HS-SPME was carried out for the most important parameters such as extraction time, sample volume and temperature. The adopted methodology has reduced consumption of organic solvents and analysis runtime. Under the optimized conditions, the method detection limit ranged from 0.6 to 1 ng/g when 5 g of sample was extracted, the precision on real samples ranged from 4 to 21% and the recovery from 69 to 104%. The proposed method, which included the analysis of a certified reference material in its validation procedure, can be extended to several other PCBs and used in the monitoring of soil or sediments for the presence of PCBs.
Resumo:
Infiltration galleries are among the oldest known means used for small public water fountains. Owing to its ancestral origin they are usually associated with high quality water. Thirty-one compounds, including pesticides and estrogens from different chemical families, were analysed in waters from infiltration galleries collected in Alto Douro Demarcated Wine region (North of Portugal). A total of twelve compounds were detected in the water samples. Nine of these compounds are described as presenting evidence or potential evidence of interfering with the hormone system of humans and wildlife. Although concentrations of the target analytes were relatively low, many of them below their limit of quantification, four compounds were above quantification limit and two of them even above the legal limit of 0.1 lg/L: dimethoate (30.38 ng/L), folpet (64.35 ng/L), terbuthylazine-desethyl (22.28 to 292.36 ng/L) and terbuthylazine (22.49 to 369.33 ng/L).
Resumo:
The Quinone outside Inhibitors (QoI) are one of the most important and recent fungicide groups used in viticulture and also allowed by Integrated Pest Management. Azoxystrobin, kresoxim-methyl and trifloxystrobin are the main active ingredients for treating downy and powdery mildews that can be present in grapes and wines. In this paper, a method is reported for the analysis of these three QoI-fungicides in grapes and wine. After liquid–liquid extraction and a clean-up on commercial silica cartridges, analysis was by isocratic HPLC with diode array detection (DAD) with a run time of 13 min. Confirmation was by solid-phase micro-extraction (SPME), followed by GC/MS determination. The main validation parameters for the three compounds in grapes and wine were a limit of detection up to 0.073mg kg-1, a precision not exceeding 10.0% and an average recovery of 93% ±38.
Resumo:
Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) whose migration from food packaging is recognized worldwide. However, the real overall food contamination and related consequences are yet largely unknown. Among humans, children’s exposure to BPA has been emphasized because of the immaturity of their biological systems. The main aim of this study was to assess the reproductive impact of BPA leached from commercially available plastic containers used or related to child nutrition, performing ecotoxicological tests using the biomonitoring species Daphnia magna. Acute and chronic tests, as well as single and multigenerational tests were done. Migration of BPA from several baby bottles and other plastic containers evaluated by GC-MS indicated that a broader range of foodstuff may be contaminated when packed in plastics. Ecotoxicological test results performed using defined concentrations of BPA were in agreement with literature, although a precocious maturity of daphnids was detected at 3.0 mg/L. Curiously, an increased reproductive output (neonates per female) was observed when daphnids were bred in the polycarbonate (PC) containers (145.1±4.3 % to 264.7±3.8 %), both in single as in multigenerational tests, in comparison with the negative control group (100.3±1.6 %). A strong correlated dose-dependent ecotoxicological effect was observed, providing evidence that BPA leached from plastic food packaging materials act as functional estrogen in vivo at very low concentrations. In contrast, neonate production by daphnids cultured in polypropylene and non-PC bottles was slightly but not significantly enhanced (92.5±2.0 % to 118.8±1.8 %). Multigenerational tests also revealed magnification of the adverse effects, not only on fecundity but also on mortality, which represents a worrying trend for organisms that are chronically exposed to xenoestrogens for many generations. Two plausible explanations for the observed results could be given: a non-monotonic dose–response relationship or a mixture toxicity effect.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de mestre em Engenharia Química e Biológica
Resumo:
Dried flowers and leaves of Origanum glandulosum Desf. were submitted to hydrodistillation (HD) and supercritical fluid extraction with CO2 (SFE). The essential oils isolated by HD and volatile oils obtained by SFE were analysed by GC and GC/MS. Total phenolics content and antioxidant effectiveness were performed. The main components of the essential oils from Bargou and Nefza were: p-cymene (40.4% and 39%), thymol (38.7% and 34.4%) and γ- terpinene (12.3% and 19.2%), respectively. The major components obtain by SFE in the volatile oil, from Bargou and Nefza, were: p-cymene (32.3% and 36.2%), thymol (41% and 40%) and γ-terpinene (20.3% and 13.3%). Total phenolic content, expressed in gallic acid equivalent (GAE) g kg-1 dry weight, varied from 12 to 27 g kg-1 dw, and the ability to scavenge the DPPH radicals, expressed by IC50 ranged from 44 to143 mg L-1.