976 resultados para GAMMA-ALUMINA
Resumo:
EMF measurements were made with an electrochemical cell of the type ~t/&(s)/&+-beta alumina/Ag~S(s)S. 2(g). S(s or 1)/R at temperatures between 95 and 241°C. Sflver $- alumina was prepared with the ion exchange technique. The patial pressure of diatomic gas obtained from cell voltages agreed with the literature data.
Resumo:
Nano ceramic alumina powders are synthesized by solution combustion synthesis using aluminium nitrate as oxidizer and urea as fuel with different fuel to oxidizer ratio. The variation of adiabatic flame temperatures are calculated theoretically for different fuel/oxidizer ratio according to thermodynamic concept and correlated with the observed flame (reaction) temperatures. A ``multi channel thermocouple setup connected to computer interfaced Keithley multi meter 2700'' is used to monitor the thermal events occurring during the process. The combustion products, characterized by XRD, show that the powders are composed of polycrystalline oxides with crystallite size of 32 to 52 nm. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various fuel to oxide ratio has been proposed for the nature of combustion and its correlation with the characteristics of as-synthesized powder.
Resumo:
Mycobacterium indicus pranii (MIP) is approved for use as an adjuvant (Immuvac/Cadi-05) in the treatment of leprosy. In addition, its efficacy is being investigated in clinical trials on patients with tuberculosis and different tumors. To evaluate and delineate the mechanisms by which autoclaved MIP enhances anti-tumor responses, the growth of solid tumors consisting of Sp2/0 (myeloma) and EL4 (thymoma) cells was studied in BALB/c and C57BL/6 mice, respectively. Treatment of mice with a single intra-dermal (i.d.) injection of MIP 3 days after Sp2/0 implantation greatly suppresses tumor growth. MIP treatment of tumor bearing mice lowers Interleukin (IL)6 but increases IL12p70 and IFN? amounts in sera. Also, increase in CD8+ T cell mediated lysis of specific tumor targets and production of high amounts of IL2 and IFN? by CD4+ T cells upon stimulation with specific tumor antigens in MIP treated mice is observed. Furthermore, MIP is also effective in reducing the growth of EL4 tumors; however, this efficacy is reduced in Ifn?-/- mice. In fact, several MIP mediated anti-tumor responses are greatly abrogated in Ifn?-/- mice: increase in serum Interleukin (IL)12p70 amounts, induction of IL2 and lysis of EL4 targets by splenocytes upon stimulation with specific tumor antigens. Interestingly, tumor-induced increase in serum IL12p70 and IFN? and reduction in growth of Sp2/0 and EL4 tumors by MIP are not observed in nonobese diabetic severe combined immunodeficiency mice. Overall, our study clearly demonstrates the importance of a functional immune network, in particular endogenous CD4+ and CD8+ T cells and IFN?, in mediating the anti-tumor responses by MIP.
Resumo:
We revisit the process e(+)e(-) -> gamma Z at the ILC with transverse beam polarization in the presence of anomalous CP- violating gamma ZZ coupling lambda(1) and gamma gamma Z coupling lambda(2). We point out that if the final- state spins are resolved, then it becomes possible to fingerprint the anomalous coupling Re lambda(1). 90% confidence level limit on Re lambda(1) achievable at ILC with center- of- mass energy of 500 GeVor 800 GeV with realistic initial beam polarization and integrated luminosity is of the order of few times of 10(-2) when the helicity of Z is used and 10(-3) when the helicity of gamma is used. The resulting corrections at quadratic order to the cross section and its influence on these limits are also evaluated and are shown to be small. The benefits of such polarization programmes at the ILC are compared and contrasted for the process at hand. We also discuss possible methods by which one can isolate events with a definite helicity for one of the final- state particles.
Resumo:
We investigate e(+)e(-) -> gamma gamma process within the Seiberg-Witten expanded noncommutative standard model (NCSM) scenario in the presence of anomalous triple gauge boson couplings. This study is done with and without initial beam polarization and we restrict ourselves to leading order effects of noncommutativity i.e. O(Theta). The noncommutative (NC) corrections are sensitive to the electric component ((Theta) over bar (E)) of NC parameter. We include the effects of Earth's rotation in our analysis. This study is done by investigating the effects of noncommutativity on different time averaged cross section observables. We have also defined forward backward asymmetries which will be exclusively sensitive to anomalous couplings. We have looked into the sensitivity of these couplings at future experiments at the International Linear Collider (ILC). This analysis is done under realistic ILC conditions with the center of mass energy (cm.) root s = 800 GeV and integrated luminosity L = 500 fb(-1). The scale of noncommutativity is assumed to be Lambda = 1 TeV. The limits on anomalous couplings of the order 10(-1) from forward backward asymmetries while much stringent limits of the order 10(-2) from total cross section are obtained if no signal beyond SM is seen. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Low temperature solution combustion method was employed to synthesize Dy2O3 nanophosphors using two different fuels (sugar and oxalyl dihydrazine (ODH)). Powder X-ray diffraction confirm pure cubic phase and the estimated particle size from Scherrer's method in sugar and ODH fuel was found to be 26 and 78 nm, respectively, and are in close agreement with those obtained using TEM and W-H plot analysis. SEM micrographs reveal porous, irregular shaped particles with large agglomeration in both the fuels. An optical band gap of 5.24 eV and 5.46 eV was observed for Dy2O3 for sugar and ODH fuels, respectively. The blueshift observed in sugar fuel is attributed to the particles size effect. Thermoluminescence (TL) response of cubic Dy2O3 nanophosphors prepared by both fuels was examined using gamma and UV radiations. The thermoluminescence of sugar used samples shows a single glow peak at 377 degrees C for 1-4 kGy gamma irradiations. When dose is increased to 5 kGy, two more shouldered peaks were observed at 245 and 310 degrees C. However, in TL of ODH used samples, a single glow peak at 376 degrees C was observed. It is observed that TL intensity is found to be more in sugar used samples. In UV irradiated samples a single glow peak at 365 degrees C was recorded in both the fuels with a little variation in TL intensity. The trapping parameters were estimated by different methods and the results are discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
For a contraction P and a bounded commutant S of P. we seek a solution X of the operator equation S - S*P = (1 - P* P)(1/2) X (1 - P* P)(1/2) where X is a bounded operator on (Ran) over bar (1 - P* P)(1/2) with numerical radius of X being not greater than 1. A pair of bounded operators (S, P) which has the domain Gamma = {(z(1) + z(2), z(2)): vertical bar z(1)vertical bar < 1, vertical bar z(2)vertical bar <= 1} subset of C-2 as a spectral set, is called a P-contraction in the literature. We show the existence and uniqueness of solution to the operator equation above for a Gamma-contraction (S, P). This allows us to construct an explicit Gamma-isometric dilation of a Gamma-contraction (S, P). We prove the other way too, i.e., for a commuting pair (S, P) with parallel to P parallel to <= 1 and the spectral radius of S being not greater than 2, the existence of a solution to the above equation implies that (S, P) is a Gamma-contraction. We show that for a pure F-contraction (S, P), there is a bounded operator C with numerical radius not greater than 1, such that S = C + C* P. Any Gamma-isometry can be written in this form where P now is an isometry commuting with C and C. Any Gamma-unitary is of this form as well with P and C being commuting unitaries. Examples of Gamma-contractions on reproducing kernel Hilbert spaces and their Gamma-isometric dilations are discussed. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The anatase phase of titania (TiO2) nano-photocatalysts was prepared using a modified sol gel process and thereafter embedded on carbon-covered alumina supports. The carbon-covered alumina (CCA) supports were prepared via the adsorption of toluene 2,4-diisocyanate (TDI) on the surface of the alumina. TDI was used as the carbon source for the first time for the carbon-covered alumina support system. The adsorption of TDI on alumina is irreversible; hence, the resulting organic moiety can undergo pyrolysis at high temperatures resulting in the formation of a carbon coating on the surface of the alumina. The TiO2 catalysts were impregnated on the CCA supports. X-ray diffraction analysis indicated that the carbon deposited on the alumina was not crystalline and also showed the successful impregnation of TiO2 on the CCA supports. In the Raman spectra, it could be deduced that the carbon was rather a conjugated olefinic or polycyclic hydrocarbons which can be considered as molecular units of a graphitic plane. The Raman analysis of the catalysed CCAs showed the presence of both the anatase titania and D and G band associated with the carbon of the CCAs. The scanning electron microscope micrographs indicated that the alumina was coated by a carbon layer and the energy dispersive X-ray spectra showed the presence of Al, O and C in the CCA samples, with the addition of Ti for the catalyst impregnated supports. The Brunauer Emmet and Teller surface area analysis showed that the incorporating of carbon on the alumina surface resulted in an increase in surface area, while the impregnation with TiO2 resulted in a further increase in surface area. However, a decrease in the pore volume and diameter was observed. The photocatalytic activity of the nanocatalysts was studied for the degradation of Rhodamine B dye. The CCA-TiO2 nanocatalysts were found to be more photocatalytically active under both visible and UV light irradiation compared to the free TIO2 nanocatalysts.
Resumo:
The effect of Pt on the growth kinetics of the gamma'-Ni(Pt)](3)Al ordered intermetallic phase and the gamma- Ni(Pt, Al) solid solution diffusion rates of the species, hardness and elastic modulus was examined by employing the diffusion couple experimental technique. Experiments were conducted by using the beta-Ni(Pt)Al phase and Ni(Pt) alloy couples, each of which had a fixed amount of Pt (5, 10 and 15 at. %) in both the end members so that the Pt content is more or less constant throughout the interdiffusion zone. The results suggest that the growth kinetics of both phases and the average effective interdiffusion coefficients of Ni and Al increase with the increase in Pt content. Nanoindentation studies across the compositional gradients show that the mechanical properties of the intermetallic phase in the superalloy are relatively insensitive to the presence of Pt but are more sensitive to the Ni/Al ratio. In contrast, the marked variation in the hardness of the gamma phase were noted, increasing markedly with Al concentration in a given couple and also increasing with increasing Pt content. Possible causes for the observed variations are discussed.
Resumo:
A cylindrical pore of similar to 7.5 angstrom diameter containing a one-dimensional water wire, within the confines of a hydrophobic channel lined with the valine side chain, has been observed in crystals of the peptide Boc-D-Pro-Aib-Val-Aib-Val-OMe (1) (Raghavender et al., 2009, 2010). The synthesis and structural characterization in crystals of three backbone homologated analogues Boc-D-Pro-Aib-beta(3)(R) Val-Aib-Val-OMe (2), Boc-D-Pro-Aib-gamma(4)(R)Val-Aib-Val-OMe (3), Boc-D-Pro-Aib-gamma(4)(S)Val-Aib-Val-OMe (4) are described. Crystal structures of peptides 2, 3 and 4 reveal close-packed arrangements in which no pore was formed. In peptides 2 and 3 the N-terminus D-Pro-Aib segment adopted conformations closely related to Type II' beta-turns, while residues 2-4 form one turn of an alpha beta right-handed C-11 helix in 2 and an alpha gamma C-12 helix in 3. In peptide 4, a continuous left-handed helical structure was observed with the D-Pro-Aib segment forming a Type III' beta-turn, followed by one turn of a left-handed alpha gamma C-12 helix. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Functionally Gradient Materials (FGM) are considered as a novel concept to implement graded functionality that otherwise cannot be achieved by conventional homogeneous materials. For biomedical applications, an ideal combination of bioactivity on the material surface as well as good physical property (strength/toughness/hardness) of the bulk is required in a designed FGM structure. In this perspective, the present work aims at providing a smooth gradation of functionality (enhanced toughening of the bulk, and retained biocompatibility of the surface) in a spark plasma processed hydroxyapatite-alumina-zirconia (HAp-Al2O3-YSZ) FGM bio-composite. In the current work HAp (fracture toughness similar to 1.5 MPa.m(1/2)) and YSZ (fracture toughness similar to 62 MPa.m(1/2)) are coupled with a transition layer of Al2O3 allowing minimum gradient of mechanical properties (especially the fracture toughness similar to 3.5 MPa.m(1/2)).The in vitro cyto-compatibilty of HAp-Al2O3-YSZ FGM was evaluated using L929 fibroblast cells and Saos-2 Osteoblast cells for their adhesion and growth. From analysis of the cell viability data, it is evident that FGM supports good cell proliferation after 2, 3, 4 days culture. The measured variation in hardness, fracture toughness and cellular adhesion across the cross section confirmed the smooth transition achieved for the FGM (HAp-Al2O3-YSZ) nanocomposite, i.e. enhanced bulk toughness combined with unrestricted surface bioactivity. Therefore, such designed biomaterials can serve as potential bone implants. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Michael additions of alpha-substituted nitrophosphonates to various nitroolefins are shown to proceed with high diastereo- and enantioselectivity when catalyzed by a quinine-derived thiourea-tertiary amine bifunctional catalyst and generate alpha,gamma-diaminophosphonic acid precursors with contiguous quaternary and tertiary stereocenters.
Resumo:
The first organocatalytic enantioselective direct vinylogous Michael reaction of alpha,beta-unsaturated gamma-butyrolactam to nitroolefins is developed using cinchona alkaloids as the catalysts. Both product enantiomers are accessible with moderate to good enantioselectivity.
Resumo:
Thyroxine is a naturally occurring human hormone produced by the thyroid gland. Clinical applications of thyroxine to treat several chronic disorders are limited by poor water solubility and instability under physiological conditions. An inclusion complex of levo-thyroxine (l-thyroxine), the active form of the hormone with gamma cyclodextrin (gamma-CD) has been obtained and studied with the aim of improving oral delivery rather than the injection formulation of the sodium salt. In addition to greater patient acceptability, inclusion complexes often improve aqueous solubility and bioavailability, stability, and reduce toxicity of drugs, thus providing enhanced pharmaceutical formulations. Physicochemical characterization of the inclusion complex was carried out using Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy and proton nuclear magnetic resonance spectroscopy. Intermolecular dipolar interactions for the inclusion complex were also studied using 2 dimensional ROESY experiments. Formation of the inclusion complex between the protons H3 and H5 of cyclodextrin with aromatic protons of thyroxine was confirmed by their dipolar interaction. Molecular modelling was used to understand the basis for the complex formation and predict the formation of other complexes. Interestingly, we found that l-thyroxine forms an inclusion complex only with the larger gamma-CD and not with other available alpha and beta forms.