939 resultados para Fuel cell materials


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we discuss the effects of catalyst load with respect to carbon powder for several Pt and Pb-based catalysts, using formic acid as a model molecule. The discussion is based on electrochemical tests, a complete morphological investigation and theoretical calculations. We show that the Pt and Pb-based catalysts presented activity in formic acid oxidation at very low catalyst loads (e.g., 0.5% in respect to the carbon content). Physical characterisations demonstrate that the electrodes are composed of separated phases of Pt and lead distributed in Pt nanometric-sized islands that are heterogeneously dispersed on the carbon support and Pb ultra-small particles homogeneously distributed throughout the entire carbon surface, as demonstrated by the microscopy studies. At high catalyst loads, very large clusters of Pb(x)O(y) could be observed. Electrochemical tests indicated an increase in the apparent resistance of the system (by a factor of 19.7 Omega) when the catalyst load was increased. The effect of lead in the materials was also studied by theoretical calculations (OFT). The main conclusion is that the presence of Pb atoms in the catalyst can improve the adsorption of formic acid in the catalytic system compared with a pure Pt-based catalyst. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since electrode electroactivity and stability depend directly on the nature, morphology, and structure of the material, we have investigated how modifications to the Pechini method during the synthesis of Pt-RuOx/C electrocatalysts affected catalyst activity. The structure and stability of the resulting materials were investigated after their submission to a large number of potential scans and to constant potential for a prolonged time period in sulfuric acid 0.5 mol L-1 and methanol 0.1 mol L-1 solution. DMFC tests were accomplished using membrane electrode assemblies (MEAs) prepared by hot-pressing a pretreated Nafion 117 membrane together with the prepared Pt-RuOx anodes and a Pt cathode (from E-TEK), in order to compare the catalytic activity of the materials prepared by different methods. The stability studies demonstrated that the catalyst whose resin/carbon support mixture was agitated in a balls mill before undergoing heat-treatment was more stable than the other prepared catalysts. The catalysts synthesized with the single resin consisting of Pt and Ru and subjected to ultrasound before heat-treatment furnished the highest power density in the single fuel cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.011208jes]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A comparative study using different proportions of CeO2/C (4%, 9% and 13% CeO2) was performed to produce H2O2, a reagent used in the oxidation of organic pollutants and in electro-Fenton reactions for the production of the hydroxyl radical (OH center dot), a strong oxidant agent used in the electrochemical treatment of aqueous wastewater. The CeO2/C materials were prepared by a modified polymeric precursor method (PPM). X-ray diffraction analysis of the CeO2/C prepared by the PPM identified two phases. CeO2 and CeO2. The average size of the crystallites in these materials was close to 7 nm. The kinetics of the oxygen reduction reaction (ORR) were evaluated by the rotating ring-disk electrode technique. The results showed that the 4% CeO2/C prepared by the PPM was the best composite for the production of H2O2 in a 1 mol L-1 NaOH electrolyte solution. For this material, the number of electrons transferred and the H2O2 percentage efficiency were 3.1 and 44%, respectively. The ring-current of the 4% CeO2/C was higher than that of Vulcan carbon, the reference material for H2O2 production, which produced 41% H2O2 and transferred 3.1 electrons per molecule of oxygen. The overpotential for this reaction on the ceria-based catalyst was substantially lower (approximately 200 mV), demonstrating the higher catalytic performance of this material. Gas diffusion electrodes (GDE) containing the catalyst were used to evaluate the real amount of H2O2 produced during exhaustive electrolysis. The 4% CeO2/C GDE produced 871 mg L-1 of H2O2, whereas the Vulcan carbon GDE produced a maximum amount of only 407 mg L-1. Thus, the 4% CeO2/C electrocatalyst prepared by the PPM is a promising material for H2O2 electrogeneration in alkaline media. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hybrid materials with enhanced properties can now be obtained by combining nanomaterials such as carbon nanotubes and metallic nanoparticles, where the main challenge is to control fabrication conditions. In this study, we demonstrate that platinum nanoparticles (PtNps) can be electrogenerated within layer-by-layer (LbL) films of polyamidoamine (PAMAM) dendrimers and single-walled carbon nanotubes (SWCNTs), which serve as stabilizing matrices. The advantages of the possible control through electrogeneration were demonstrated with a homogeneous distribution of PtNps over the entire surface of the PAMAM/SWCNT LbL films, whose electroactive sites could be mapped using magnetic force microscopy. The Pt-containing films were used as catalysts for hydrogen peroxide reduction, with a decrease in the reduction potential of 60 mV compared to a Pt film deposited onto bare ITO. By analyzing the mechanisms responsible for hydrogen peroxide reduction, we ascribed the enhanced catalytic activity to synergistic effects between platinum and carbon in the LbL films, which are promising for sensing and fuel cell applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Es werden neuartige, polymere Protonenleiter vorgestellt die nach dem 'Konzept des polymergebunden Protonensolvens' realisiert wurden. Sie zeigen protonische Leitfähigkeit als intrinsische Eigenschaft, sodass keine zweite, flüssige Phase zur Protonenleitung nötig ist. Verwirklicht wurde das Konzept anhand von kammartigen Siloxanoligomeren und -polymeren, wobei Imidazol als Protonensolvens durch flexible Spacer kovalent an das Rückgrat gebunden ist. Durch Pfropfung mit imidazoltragenden Spacereinheiten wurden ferner Kieselgelnanopartikel oberflächenmodifiziert. Um die Auswirkungen der Immobilisierung von Imidazol auf die Leitfähigkeit zu untersuchen, wurden neben unterschiedlichen Molekulargewichten, die Verbindungen auch jeweils mit verschiedenen Spacerlängen synthetisiert. Die Materialien wurden umfassend charakterisiert und auf ihr thermisches Verhalten, Stabilität, Leitfähigkeit, Diffusion und dielektrisches Verhalten sowie auch nach Dotierung mit Säure untersucht. Thermisch stabil sind die Materialien bis ca. 200°C. Die Leitfähigkeiten betragen bis zu 1,5E-3 S/cm bei 160°C, welche aufgrund der Immobilisierung des Imidazols ausschließlich auf Strukturdiffusion zurückzuführen sind. Die Strukturdiffusion ist vergleichbar mit dem Grotthus-Mechanismus in Wasser und wird durch die lokale Mobilität der Imidazolmoleküle, d.h. durch die Glasübergangstemperatur des Systems bestimmt. Entsprechend wird das für Glasbildner typische Vogel-Tamman-Fulcher-Verhalten für alle untersuchten Transportprozesse gefunden. Die mit abnehmender Glasübergangstemperatur abnehmende mechanische Stabilität der Materialien kann, wie gezeigt ist, durch Compoundierung mit Kieselgelnanopartikeln entscheidend verbessert werden, was eine kostengünstige und aussichtsreiche Möglichkeit zur Herstellung von Membranen für Brennstoffzellen darstellt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mit Hilfe von Brennstoffzellen wird eine effiziente Energieumwandlung von chemischer in elektrische Energie möglich. Die kommerziellen PEM-Brennstoffzellen benutzen Membra-nen, die zum Erreichen hoher Leitfähigkeiten eine wässrige Phase erfordern, in der der Proto-nentransport stattfindet. Somit wird die Betriebstemperatur durch den Siedepunkt des Wassers limitiert. Die verwendeten Pt-Katalysatoren zeigen bei niedrigen Temperaturen eine höhere Empfindlichkeit gegenüber CO, dass im Reformierungsprozess bei der Erzeugung von Was-serstoff entsteht. Austausch der wässrigen Phase gegen Heterozyklen, die ein zu Wasser ver-gleichbares Wasserstoffbrückennetzwerk aufbauen, in dem der Protonentransport stattfinden kann, ermöglicht eine höhere Betriebstemperatur. Durch das im Laufe des Brennstoffzellen-betriebs gebildete Wasser, können die Heterozyklen verdünnt bzw. komplett aus der Memb-ran ausgewaschen werden. Daher ist es erforderlich, die Ladungsträger an ein Polymerrück-grat zu binden, so dass sie eine hohe Beweglichkeit und Konzentration, die denen in der flüs-sigen Phase einer konventionellen Membran entsprechen, aufweisen. Diese Arbeit beschreibt die Synthese und Charakterisierung von Protonenleitern, die ohne eine flüssige Phase auskommen, da sie bereits protonische Leitfähigkeit als intrinsische Ei-genschaft zeigen. Es wurden verschiedene imidazol- bzw. benzimidazolhaltige Dimere und Polythiophene, in denen Benzimidazol in der Seitenkette über verschieden flexible Spacer mit dem Polymerrückgrat verbunden ist, synthetisiert. Die Materialien wurden in undotierten Zu-stand und nach Dotierung mit geringen Mengen Phosphorsäure umfassend charakterisiert und auf thermisches Verhalten, Stabilität und Leitfähigkeit untersucht. Die benzimidazolhaltigen Dimere weisen mit 250 °C die höchsten Zersetzungstemperaturen auf. Mit zunehmender Temperatur kann in allen Fällen eine Erhöhung der Leitfähigkeit beobachtet werden, die sich in der Arrhenius-Auftragung durch eine Gerade anpassen lässt, somit kann der Protonentrans-port durch einen Protonen-hüpfmechanismus beschrieben werden. Die höchste beobachtete Leitfähigkeit liegt im Bereich von 10-6 S/cm bei 160 °C. Durch Zusatz von Phosphorsäure kann die Leitfähigkeit z.T. um einige Größenordnungen gesteigert werden. Eine Ausnahme bilden die Polythiophene, die sowohl protonische als auch elektronische Leitfähigkeit besit-zen. Hier führt die Säure zu einer Lokalisierung der Ladungsträger, so dass die elektronische Leitfähigkeit eingeschränkt wird.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In dieser Arbeit werden drei wasserstoffverbrückte Systeme in der kondensierten Phase mit Hilfe von first-principles-Elektronenstruktur-Rechnungen untersucht, die auf der Dichtefunktionaltheorie (DFT) unter periodischen Randbedingungen basieren. Ihre lokalen Konformationen und Wasserstoffbrückenbindungen werden mittels ab-initio Molekulardynamiksimulationen berechnet und weiterhin durch die Bestimmung ihrer spektroskopischen Parameter charakterisiert. Der Schwerpunkt liegt dabei auf lokalen Strukturen und auf schnellen Fluktuationen der Wasserstoffbrückenbindungen, welche von zentraler Bedeutung für die physikalischen und chemischen Eigenschaften der betrachteten Systeme sind. Die für die lokalen, instantanen Konformationen berechneten Spektren werden verwendet, um die physikalischen Prozesse, die hinter den untersuchten Phänomenen stehen, zu erklären: die Wasseradsorption auf metallischen Oberflächen, die Ionensolvatisierung in wässrigen Lösungen und der Protonentransport in protonleitenden Polymeren, welche Prototypen von Membranen für Brennstoffzellen sind. Die Möglichkeit der Vorhersage spektroskopischer Parameter eröffnet vielfältige Möglichkeiten des Dialogs zwischen Experimenten und numerischen Simulationen. Die in dieser Arbeit vorgestellten Ergebnisse zeigen, dass die Zuverlässigkeit dieser theoretischen Berechnungen inzwischen für viele experimentell relevante Systeme ein quantitatives Niveau erreicht hat.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die vorliegende Dissertation befasst sich mit der Synthese, physikochemischen und polymerspezifischen Charakterisierung und insbesondere der impedanzspektroskopischen Untersuchung von sowohl neuartigen, solvensfreien lithiumionen- als auch protonenleitfähigen Polymermaterialien für potentielle Anwendungen in sekundären Lithiumionenbatterien bzw. in Hochtemperatur-Protonenaustauschmembran-Brennstoffzellen (engl.: proton exchange membrane fuel cell, auch: polymer electrolyte membrane fuel cell, PEMFC). Beiden Typen von ionenleitfähigen Membranen liegt das gängige Prinzip der chemischen Anbindung einer für den Ionentransport verantwortlichen Seitengruppe an eine geeignete Polymerhauptkette zugrunde („Entkopplung“; auch Immobilisierung), welcher hinsichtlich Glasübergangstemperatur (Tg), elektrochemischer und thermischer Stabilität (Td) eine dynamisch entkoppelte, aber nicht minder bedeutsame Rolle zukommt. Die Transportaktivierung erfolgt in beiden Fällen thermisch. Im Falle der Protonenleiter liegt die zusätzliche Intention darin, eine Alternative aufzuzeigen, in der die Polymerhauptkette gekoppelt direkt am Protonentransportmechanismus beteiligt ist, d.h., dass der translatorisch diffusive Ionentransport entlang der Hauptkette stattfindet und nicht zwischen benachbarten Seitenketten. Ein Hauptaugenmerk der Untersuchungen liegt sowohl bei den lithiumionen- als auch den protonenleitfähigen Polymermembranen auf temperaturabhängigen dynamischen Prozessen der jeweiligen Ionenspezies in der polymeren Matrix, was die Ionenleitfähigkeit selbst, Relaxationsphänomene, die translatorische Ionendiffusion und im Falle der Protonenleiter etwaige mesomere Grenzstrukturübergänge umfasst. Lithiumionenleiter: Poly(meth)acrylate mit (2-Oxo-1,3-dioxolan)resten (Cyclocarbonat-) in der Seitenkette unterschiedlicher Spacerlänge wurden synthetisiert und charakterisiert. Die Leitfähigkeit s(,T) erreicht bei Poly(2-oxo-[1,3]dioxolan-4-yl)methylacrylat (PDOA): Lithium-bis-trifluormethansulfonimid (LiTFSI) (10:3) ca. 10^-3,5 S cm^-1 bei 150 °C. Weichmachen (Dotieren) mit äquimolaren Mengen an Propylencarbonat (PC) bewirkt in allen Fällen einen enormen Anstieg der Leitfähigkeit. Die höchsten Leitfähigkeiten von Mischungen dieser Polymere mit LiTFSI (und LiBOB) werden nicht beim System mit der niedrigsten Tg gefunden. Auch dient Tg nicht als Referenztemperatur (Tref) nach Williams-Landel-Ferry (WLF), so dass eine WLF-Anpassung der Leitfähigkeitsdaten nur über einen modifizierten WLF-Algorithmus gelingt. Die ermittelten Tref liegen deutlich unterhalb von Tg bei Temperaturen, die charakteristisch für die Seitenkettenrelaxation sind („Einfrieren“). Dies legt nahe, dass der Relaxation der Seitenketten eine entscheidende Rolle im Li^+-Leitfähigkeitsmechanismus zukommt. Die Li^+-Überführungszahlen tLi^+ in diesen Systemen schwanken zwischen 0,13 (40 °C) und 0,55 (160 °C). Protonenleiter: Polymere mit Barbitursäure- bzw. Hypoxanthinresten in der Seitenkette und Polyalkylenbiguanide unterschiedlicher Spacerlänge wurden synthetisiert und charakterisiert. Die Leitfähigkeit s(,T) erreicht bei Poly(2,4,6(1H,3H,5H)-trioxopyrimidin-5-yl)methacrylat (PTPMA) maximal ca. 10^-4,4 S cm^-1 bei 140 °C. Höhere Leitfähigkeiten sind nur durch Mischen mit aprotischen Lösungsmitteln erreichbar. Die höchste Leitfähigkeit wird im Falle der Polyalkylenbiguanide bei Polyethylenbiguanid (PEB) erzielt. Sie erreicht 10^-2,4 S cm^-1 bei 190 °C. Die Aktivierungsenergien EA der Polyalkylenbiguanide liegen (jeweils unterhalb von Tg) zwischen ca. 3 – 6 kJ mol^-1. In allen beobachteten Fällen dient Tg als Tref, so dass eine konventionelle WLF-Behandlung möglich ist und davon auszugehen ist, dass die Leitfähigkeit mit dem freien Volumen Vf korreliert.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lo studio della deidrogenazione catalitica di idrocarburi affronta uno dei problemi principali per l'applicazione delle fuel cells in aeromobili. La conversione di miscele di idrocarburi in H2 può essere eseguita in loco, evitando le difficoltà di stoccaggio dell'idrogeno: l'H2 prodotto è privo di CO e CO2 e può essere alimentato direttamente alle celle a combustibile per dare energia ai sistemi ausiliari, mentre i prodotti deidrogenati, mantenendo le loro originali caratteristiche possono essere riutilizzati come carburante. In questo un lavoro è stato effettuato uno studio approfondito sulla deidrogenazione parziale (PDH) di diverse miscele di idrocarburi e carburante avio JetA1 desolforato utilizzando Pt-Sn/Al2O3, con l'obiettivo di mettere in luce i principali parametri (condizioni di reazione e composizione di catalizzatore) coinvolti nel processo di deidrogenazione. Inoltre, la PDH di miscele idrocarburiche e di Jet-A1 ha evidenziato che il problema principale in questa reazione è la disattivazione del catalizzatore, a causa della formazione di residui carboniosi e dell’avvelenamento da zolfo. Il meccanismo di disattivazione da residui carboniosi è stato studiato a fondo, essendo uno dei principali fattori che influenzano la vita del catalizzatore e di conseguenza l'applicabilità processo. Alimentando molecole modello separatamente, è stato possibile discriminare le classi di composti che sono coinvolti principalmente nella produzione di H2 o nell’avvelenamento del catalizzatore. Una riduzione parziale della velocità di disattivazione è stata ottenuta modulando l'acidità del catalizzatore al fine di ottimizzare le condizioni di reazione. I catalizzatori Pt-Sn modificati hanno mostrato ottimi risultati in termini di attività, ma soffrono di una disattivazione rapida in presenza di zolfo. Così, la sfida finale di questa ricerca era sviluppare un sistema catalitico in grado di lavorare in condizioni reali con carburante ad alto tenore di zolfo, in questo campo sono stati studiati due nuove classi di materiali: Ni e Co fosfuri supportati su SiO2 e catalizzatori Pd-Pt/Al2O3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A phenomenological transition film evaporation model was introduced to a pore network model with the consideration of pore radius, contact angle, non-isothermal interface temperature, microscale fluid flows and heat and mass transfers. This was achieved by modeling the transition film region of the menisci in each pore throughout the porous transport layer of a half-cell polymer electrolyte membrane (PEM) fuel cell. The model presented in this research is compared with the standard diffusive fuel cell modeling approach to evaporation and shown to surpass the conventional modeling approach in terms of predicting the evaporation rates in porous media. The current diffusive evaporation models used in many fuel cell transport models assumes a constant evaporation rate across the entire liquid-air interface. The transition film model was implemented into the pore network model to address this issue and create a pore size dependency on the evaporation rates. This is accomplished by evaluating the transition film evaporation rates determined by the kinetic model for every pore containing liquid water in the porous transport layer (PTL). The comparison of a transition film and diffusive evaporation model shows an increase in predicted evaporation rates for smaller pore sizes with the transition film model. This is an important parameter when considering the micro-scaled pore sizes seen in the PTL and becomes even more substantial when considering transport in fuel cells containing an MPL, or a large variance in pore size. Experimentation was performed to validate the transition film model by monitoring evaporation rates from a non-zero contact angle water droplet on a heated substrate. The substrate was a glass plate with a hydrophobic coating to reduce wettability. The tests were performed at a constant substrate temperature and relative humidity. The transition film model was able to accurately predict the drop volume as time elapsed. By implementing the transition film model to a pore network model the evaporation rates present in the PTL can be more accurately modeled. This improves the ability of a pore network model to predict the distribution of liquid water and ultimately the level of flooding exhibited in a PTL for various operating conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fuel Cells are a promising alternative energy technology. One of the biggest problems that exists in fuel cell is that of water management. A better understanding of wettability characteristics in the fuel cells is needed to alleviate the problem of water management. Contact angle data on gas diffusion layers (GDL) of the fuel cells can be used to characterize the wettability of GDL in fuel cells. A contact angle measurement program has been developed to measure the contact angle of sessile drops from drop images. Digitization of drop images induces pixel errors in the contact angle measurement process. The resulting uncertainty in contact angle measurement has been analyzed. An experimental apparatus has been developed for contact angle measurements at different temperature, with the feature to measure advancing and receding contact angles on gas diffusion layers of fuel cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent changes in the cost and availability of natural gas (NG) as compared to diesel have sparked interest at all levels of the commercial shipping sector. In particular, Class 1 heavy-duty rail has been researching NG as a supplement to diesel combustion. This study investigates the relative economic and emissions advantage of making use of the energy efficiencies if combustion is circumvented altogether by use of fuel cell (FC) technologies applied to NG. FC technology for the transport sector has primarily been developed for the private automobile. However, FC use in the automobile sector faces considerable economic and logistical barriers such as cost, range, durability, and refueling infrastructure. The heavy-duty freight sector may be a more reasonable setting to introduce FC technology to the transportation market. The industry has shown interest in adopting NG as a potential fuel by already investing in NG infrastructure and locomotives. The two most promising FC technologies are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). SOFCs are more efficient and capable of accepting any kind of fuel, which makes them particularly attractive. The rail industry can benefit from the adoption of FC technology through reduced costs and emissions, as well as limiting dependence on diesel, which accounts for a large portion of operation expenses for Class 1 railroads. This report provides an economic feasibility analysis comparing the use of PEMFCs and SOFCs in heavy freight rail transport applications. The scope is to provide insight into which technologies could be pursued by the industry and to prioritize technologies that need further development. Initial results do not show economic potential for NG and fuel cells in locomotion, but some minimal potential for reduced emissions is seen. Various technology configurations and market scenarios analyzed could provide savings if the price of LNG is decreased and the price of diesel increases. The most beneficial areas of needed research include technology development for the variable output of SOFCs, and hot start-up optimization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within the last years there has been increasing interest in direct liquid fuel cells as power sources for portable devices and, in the future, power plants for electric vehicles and other transport media as ships will join those applications. Methanol is considerably more convenient and easy to use than gaseous hydrogen and a considerable work is devoted to the development of direct methanol fuel cells. But ethanol has much lower toxicity and from an ecological viewpoint ethanol is exceptional among all other types of fuel as is the only chemical fuel in renewable supply. The aim of this study is to investigate the possibility of using direct alcohol fuel cells fed with alcohol mixtures. For this purpose, a comparative exergy analysis of a direct alcohol fuel cell fed with alcohol mixtures against the same fuel cell fed with single alcohols is performed. The exergetic efficiency and the exergy loss and destruction are calculated and compared in each case. When alcohol mixtures are fed to the fuel cell, the contribution of each fuel to the fuel cell performance is weighted attending to their relative proportion in the aqueous solution. The optimum alcohol composition for methanol/ethanol mixtures has been determined.