942 resultados para Free Boundary Value Problem
Resumo:
We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.
Resumo:
We consider the Cauchy problem for the Laplace equation in 3-dimensional doubly-connected domains, that is the reconstruction of a harmonic function from knowledge of the function values and normal derivative on the outer of two closed boundary surfaces. We employ the alternating iterative method, which is a regularizing procedure for the stable determination of the solution. In each iteration step, mixed boundary value problems are solved. The solution to each mixed problem is represented as a sum of two single-layer potentials giving two unknown densities (one for each of the two boundary surfaces) to determine; matching the given boundary data gives a system of boundary integral equations to be solved for the densities. For the discretisation, Weinert's method [24] is employed, which generates a Galerkin-type procedure for the numerical solution via rewriting the boundary integrals over the unit sphere and expanding the densities in terms of spherical harmonics. Numerical results are included as well.
Resumo:
Surge flow phenomena. e.g.. as a consequence of a dam failure or a flash flood, represent free boundary problems. ne extending computational domain together with the discontinuities involved renders their numerical solution a cumbersome procedure. This contribution proposes an analytical solution to the problem, It is based on the slightly modified zero-inertia (ZI) differential equations for nonprismatic channels and uses exclusively physical parameters. Employing the concept of a momentum-representative cross section of the moving water body together with a specific relationship for describing the cross sectional geometry leads, after considerable mathematical calculus. to the analytical solution. The hydrodynamic analytical model is free of numerical troubles, easy to run, computationally efficient. and fully satisfies the law of volume conservation. In a first test series, the hydrodynamic analytical ZI model compares very favorably with a full hydrodynamic numerical model in respect to published results of surge flow simulations in different types of prismatic channels. In order to extend these considerations to natural rivers, the accuracy of the analytical model in describing an irregular cross section is investigated and tested successfully. A sensitivity and error analysis reveals the important impact of the hydraulic radius on the velocity of the surge, and this underlines the importance of an adequate description of the topography, The new approach is finally applied to simulate a surge propagating down the irregularly shaped Isar Valley in the Bavarian Alps after a hypothetical dam failure. The straightforward and fully stable computation of the flood hydrograph along the Isar Valley clearly reflects the impact of the strongly varying topographic characteristics on the How phenomenon. Apart from treating surge flow phenomena as a whole, the analytical solution also offers a rigorous alternative to both (a) the approximate Whitham solution, for generating initial values, and (b) the rough volume balance techniques used to model the wave tip in numerical surge flow computations.
Resumo:
In dieser Arbeit werden nichtüberlappende Gebietszerlegungsmethoden einerseits hinsichtlich der zu lösenden Problemklassen verallgemeinert und andererseits in bisher nicht untersuchten Kontexten betrachtet. Dabei stehen funktionalanalytische Untersuchungen zur Wohldefiniertheit, eindeutigen Lösbarkeit und Konvergenz im Vordergrund. Im ersten Teil werden lineare elliptische Dirichlet-Randwertprobleme behandelt, wobei neben Problemen mit dominantem Hauptteil auch solche mit singulärer Störung desselben, wie konvektions- oder reaktionsdominante Probleme zugelassen sind. Der zweite Teil befasst sich mit (gleichmäßig) monotonen koerziven quasilinearen elliptischen Dirichlet-Randwertproblemen. In beiden Fällen wird das Lipschitz-Gebiet in endlich viele Lipschitz-Teilgebiete zerlegt, wobei insbesondere Kreuzungspunkte und Teilgebiete ohne Außenrand zugelassen sind. Anschließend werden Transmissionsprobleme mit frei wählbaren $L^{\infty}$-Parameterfunktionen hergeleitet, wobei die Konormalenableitungen als Funktionale auf geeigneten Funktionenräumen über den Teilrändern ($H_{00}^{1/2}(\Gamma)$) interpretiert werden. Die iterative Lösung dieser Transmissionsprobleme mit einem Ansatz von Deng führt auf eine Substrukturierungsmethode mit Robin-artigen Transmissionsbedingungen, bei der eine Auswertung der Konormalenableitungen aufgrund einer geschickten Aufdatierung der Robin-Daten nicht notwendig ist (insbesondere ist die bekannte Robin-Robin-Methode von Lions als Spezialfall enthalten). Die Konvergenz bezüglich einer partitionierten $H^1$-Norm wird für beide Problemklassen gezeigt. Dabei werden keine über $H^1$ hinausgehende Regularitätsforderungen an die Lösungen gestellt und die Gebiete müssen keine zusätzlichen Glattheitsvoraussetzungen erfüllen. Im letzten Kapitel werden nichtmonotone koerzive quasilineare Probleme untersucht, wobei das Zugrunde liegende Gebiet nur in zwei Lipschitz-Teilgebiete zerlegt sein soll. Das zugehörige nichtlineare Transmissionsproblem wird durch Kirchhoff-Transformation in lineare Teilprobleme mit nichtlinearen Kopplungsbedingungen überführt. Ein optimierungsbasierter Lösungsansatz, welcher einen geeigneten Abstand der rücktransformierten Dirichlet-Daten der linearen Teilprobleme auf den Teilrändern minimiert, führt auf ein optimales Kontrollproblem. Die dabei entstehenden regularisierten freien Minimierungsprobleme werden mit Hilfe eines Gradientenverfahrens unter minimalen Glattheitsforderungen an die Nichtlinearitäten gelöst. Unter zusätzlichen Glattheitsvoraussetzungen an die Nichtlinearitäten und weiteren technischen Voraussetzungen an die Lösung des quasilinearen Ausgangsproblems, kann zudem die quadratische Konvergenz des Newton-Verfahrens gesichert werden.
Resumo:
In this work we show that the eigenvalues of the Dirichlet problem for the biharmonic operator are generically simple in the set Of Z(2)-symmetric regions of R-n, n >= 2, with a suitable topology. To accomplish this, we combine Baire`s lemma, a generalised version of the transversality theorem, due to Henry [Perturbation of the boundary in boundary value problems of PDEs, London Mathematical Society Lecture Note Series 318 (Cambridge University Press, 2005)], and the method of rapidly oscillating functions developed in [A. L. Pereira and M. C. Pereira, Mat. Contemp. 27 (2004) 225-241].
Resumo:
A transmission problem involving two Euler-Bernoulli equations modeling the vibrations of a composite beam is studied. Assuming that the beam is clamped at one extremity, and resting on an elastic bearing at the other extremity, the existence of a unique global solution and decay rates of the energy are obtained by adding just one damping device at the end containing the bearing mechanism.
Resumo:
The option value problem with two costs is written as a variational inequality. The advantage of this formulation is that it takes place in a fixed domain. Thus no front tracking is needed for numerical approximation of the free boundary. An iterative algorithm is proposed which can be used to solve the nonlinear system obtained by finite differences or finite elements procedures. Especial care has to be taken in the design of differences finites schemes o finite elements due to the degeneracy of the differential operator. These schemes can be absortion or convection dominated nearly to the axis. This is a preliminary note to the study of this kind of problems.
Resumo:
En esta tesis se investiga la interacción entre un fluido viscoso y un cuerpo sólido en presencia de una superficie libre. El problema se expresa teóricamente poniendo especial atención a los aspectos de conservación de energía y de la interacción del fluido con el cuerpo. El problema se considera 2D y monofásico, y un desarrollo matemático permite una descomposición de los términos disipativos en términos relacionados con la superficie libre y términos relacionados con la enstrofía. El modelo numérico utilizado en la tesis se basa en el método sin malla Smoothed Particle Hydrodynamics (SPH). De manera análoga a lo que se hace a nivel continuo, las propiedades de conservación se estudian en la tesis con el sistema discreto de partículas. Se tratan también las condiciones de contorno de un cuerpo que se mueve en un flujo viscoso, implementadas con el método ghost-fluid. Se ha desarrollado un algoritmo explícito de interacción fluido / cuerpo. Se han documentado algunos casos de modo detallado con el objetivo de comprobar la capacidad del modelo para reproducir correctamente la disipación de energía y el movimiento del cuerpo. En particular se ha investigado la atenuación de una onda estacionaria, comparando la simulación numérica con predicciones teóricas. Se han realizado otras pruebas para monitorizar la disipación de energía para flujos más violentos que implican la fragmentación de la superficie libre. La cantidad de energía disipada con los diferentes términos se ha evaluado en los casos estudiados con el modelo numérico. Se han realizado otras pruebas numéricas para verificar la técnica de modelización de la interacción fluido / cuerpo, concretamente las fuerzas ejercidas por las olas en cuerpos con formas simples, y el equilibrio de un cuerpo flotante con una forma compleja. Una vez que el modelo numérico ha sido validado, se han realizado simulaciones numéricas para obtener una comprensión más completa de la física implicada en casos (casi) realistas sobre los había aspectos que no se conocían suficientemente. En primer lugar se ha estudiado el el flujo alrededor de un cilindro bajo la superficie libre. El estudio se ha realizado con un número de Reynolds moderado, para un rango de inmersiones del cilindro y números de Froude. La solución numérica permite una investigación de los patrones complejos que se producen. La estela del cilindro interactúa con la superficie libre. Se han identificado algunos inestabilidades características. El segundo estudio se ha realizado sobre el problema de sloshing, tanto experimentalmente como numéricamente. El análisis se restringe a aguas poco profundas y con oscilación horizontal, pero se ha estudiado un gran número de condiciones, lo que lleva a una comprensión bastante completa de los sistemas de onda involucradas. La última parte de la tesis trata también sobre un problema de sloshing pero esta vez el tanque está oscilando con rotación y hay acoplamiento con un sistema mecánico. El sistema se llama pendulum-TLD (Tuned Liquid Damper - con líquido amortiguador). Este tipo de sistema se utiliza normalmente para la amortiguación de las estructuras civiles. El análisis se ha realizado analíticamente, numéricamente y experimentalmente utilizando líquidos con viscosidades diferentes, centrándose en características no lineales y mecanismos de disipación. ABSTRA C T The subject of the present thesis is the interaction between a viscous fluid and a solid body in the presence of a free surface. The problem is expressed first theoretically with a particular focus on the energy conservation and the fluid-body interaction. The problem is considered 2D and monophasic, and some mathematical development allows for a decomposition of the energy dissipation into terms related to the Free Surface and others related to the enstrophy. The numerical model used on the thesis is based on Smoothed Particle Hydrodynamics (SPH): a computational method that works by dividing the fluid into particles. Analogously to what is done at continuum level, the conservation properties are studied on the discrete system of particles. Additionally the boundary conditions for a moving body in a viscous flow are treated and discussed using the ghost-fluid method. An explicit algorithm for handling fluid-body coupling is also developed. Following these theoretical developments on the numerical model, some test cases are devised in order to test the ability of the model to correctly reproduce the energy dissipation and the motion of the body. The attenuation of a standing wave is used to compare what is numerically simulated to what is theoretically predicted. Further tests are done in order to monitor the energy dissipation in case of more violent flows involving the fragmentation of the free-surface. The amount of energy dissipated with the different terms is assessed with the numerical model. Other numerical tests are performed in order to test the fluid/body interaction method: forces exerted by waves on simple shapes, and equilibrium of a floating body with a complex shape. Once the numerical model has been validated, numerical tests are performed in order to get a more complete understanding of the physics involved in (almost) realistic cases. First a study is performed on the flow passing a cylinder under the free surface. The study is performed at moderate Reynolds numbers, for various cylinder submergences, and various Froude numbers. The capacity of the numerical solver allows for an investigation of the complex patterns which occur. The wake from the cylinder interacts with the free surface, and some characteristical flow mechanisms are identified. The second study is done on the sloshing problem, both experimentally and numerically. The analysis is restrained to shallow water and horizontal excitation, but a large number of conditions are studied, leading to quite a complete understanding of the wave systems involved. The last part of the thesis still involves a sloshing problem but this time the tank is rolling and there is coupling with a mechanical system. The system is named pendulum-TLD (Tuned Liquid Damper). This kind of system is normally used for damping of civil structures. The analysis is then performed analytically, numerically and experimentally for using liquids with different viscosities, focusing on non-linear features and dissipation mechanisms.
Resumo:
A new mathematical model is proposed for the spreading of a liquid film on a solid surface. The model is based on the standard lubrication approximation for gently sloping films (with the no-slip condition for the fluid at the solid surface) in the major part of the film where it is not too thin. In the remaining and relatively small regions near the contact lines it is assumed that the so-called autonomy principle holds—i.e., given the material components, the external conditions, and the velocity of the contact lines along the surface, the behavior of the fluid is identical for all films. The resulting mathematical model is formulated as a free boundary problem for the classical fourth-order equation for the film thickness. A class of self-similar solutions to this free boundary problem is considered.
On the numerical solution of a Cauchy problem in an elastostatic half-plane with a bounded inclusion
Resumo:
We propose an iterative procedure for the inverse problem of determining the displacement vector on the boundary of a bounded planar inclusion given the displacement and stress fields on an infinite (planar) line-segment. At each iteration step mixed boundary value problems in an elastostatic half-plane containing the bounded inclusion are solved. For efficient numerical implementation of the procedure these mixed problems are reduced to integral equations over the bounded inclusion. Well-posedness and numerical solution of these boundary integral equations are presented, and a proof of convergence of the procedure for the inverse problem to the original solution is given. Numerical investigations are presented both for the direct and inverse problems, and these results show in particular that the displacement vector on the boundary of the inclusion can be found in an accurate and stable way with small computational cost.
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.
Resumo:
An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed in terms of a convolution of two special functions of Wright’s type.
Resumo:
Недю Попиванов, Цветан Христов - Изследвани са някои тримерни аналози на задачата на Дарбу в равнината. През 1952 М. Протер формулира нови тримерни гранични задачи както за клас слабо хиперболични уравнения, така и за някои хиперболично-елиптични уравнения. За разлика от коректността на двумерната задача на Дарбу, новите задачи са некоректни. За слабо хиперболични уравнения, съдържащи младши членове, ние намираме достатъчни условия както за съществуване и единственост на обобщени решения с изолирана степенна особеност, така и за единственост на квази-регулярни решения на задачата на Протер.