976 resultados para Flour mills
Resumo:
Fermion boundary conditions play a relevant role in revealing the confinement mechanism of N=1 supersymmetric Yang-Mills theory with one compactified space-time dimension. A deconfinement phase transition occurs for a sufficiently small compactification radius, equivalent to a high temperature in the thermal theory where antiperiodic fermion boundary conditions are applied. Periodic fermion boundary conditions, on the other hand, are related to the Witten index and confinement is expected to persist independently of the length of the compactified dimension. We study this aspect with lattice Monte Carlo simulations for different values of the fermion mass parameter that breaks supersymmetry softly. We find a deconfined region that shrinks when the fermion mass is lowered. Deconfinement takes place between two confined regions at large and small compactification radii, that would correspond to low and high temperatures in the thermal theory. At the smallest fermion masses we find no indication of a deconfinement transition. These results are a first signal for the predicted continuity in the compactification of supersymmetric Yang-Mills theory.
Resumo:
We consider a three-dimensional effective theory of Polyakov lines derived previously from lattice Yang-Mills theory and QCD by means of a resummed strong coupling expansion. The effective theory is useful for investigations of the phase structure, with a sign problem mild enough to allow simulations also at finite density. In this work we present a numerical method to determine improved values for the effective couplings directly from correlators of 4d Yang-Mills theory. For values of the gauge coupling up to the vicinity of the phase transition, the dominant short range effective coupling are well described by their corresponding strong coupling series. We provide numerical results also for the longer range interactions, Polyakov lines in higher representations as well as four-point interactions, and discuss the growing significance of non-local contributions as the lattice gets finer. Within this approach the critical Yang-Mills coupling β c is reproduced to better than one percent from a one-coupling effective theory on N τ = 4 lattices while up to five couplings are needed on N τ = 8 for the same accuracy.
Resumo:
Signatur des Originals: S 36/F10211
Resumo:
Thermorheological changes in high hydrostatic pressure (HHP)-treated chickpea flour (CF) slurries were studied as a function of pressure level (0.1, 150, 300, 400, and 600 MPa) and slurry concentration (1:5, 1:4, 1:3, and 1:2 flour-to-water ratios). HHP-treated slurries were subsequently analyzed for changes in properties produced by heating, under both isothermal and non-isothermal processes. Elasticity (G′) of pressurized slurry increased with pressure applied and concentration. Conversely, heat-induced CF paste gradually transformed from solid-like behavior to liquid-like behavior as a function of moisture content and pressure level. The G′ and enthalpy of the CF paste decreased with increasing pressure level in proportion with the extent of HHP-induced starch gelatinization. At 25 °C and 15 min, HHP treatment at 450 and 600 MPa was sufficient to complete gelatinization of CF slurry at the lowest concentration (1:5), while more concentrated slurries would require higher pressures and temperature during treatment or longer holding times. Industrial relevance Demand for chickpea gel has increased considerably in the health and food industries because of its many beneficial effects. However, its use is affected by its very difficult handling. Judicious application of high hydrostatic pressure (HHP) at appropriate levels, adopted as a pre-processing instrument in combination with heating processes, is presented as an innovative technology to produce a remarkable decrease in thermo-hardening of heat-induced chickpea flour paste, permitting the development of new chickpea-based products with desirable handling properties and sensory attributes.
Resumo:
The goal of this communication is to offer, through computer-aided design tools, a methodology to recover and virtually reconstruct disappeared buildings of our industrial historical heritage. It will be applied to the case of the flour factory "El Puente Colgante" (The Suspended Bridge) in Aranjuez, which was demolished in 2001. The process is as follows: After a historical analysis of the evolution in time of the flour factory, a field work provides data allowing an info graphic reconstruction of the factory. Once this information has been processed, a lifting of the current state is made with AutoCAD, and a three-dimensional model is built with the Rhinoceros application. Then images of the ensemble are obtained with the applications Rhinoceros and V-Ray, ending with a postproduction with Photoshop. The proposed methodology has permitted to obtain a three-dimensional model of the flour factory ?El Puente Colgante? in Aranjuez, with an accurate virtual reconstruction of its original state prior to demolition. The procedure exposed is susceptible to be generalized for any other example of industrial architecture.
Resumo:
Baker's asthma is one of the most common types of occupational asthma and its prevalence is increasing in the last years. Diagnosis of occupational asthma is complex. The poor specificity of current diagnostic approaches may be associated with insufficient purity of wheat extracts or lack of inclusion of major allergens in them. In this work, we use microarray technology to characterize the allergenic profiles of baker's asthma patients from three regions in Spain and to analyze the influence of other environmental allergens on the sensitization pattern.
Resumo:
NIR Hyperspectral imaging (1000-2500 nm) combined with IDC allowed the detection of peanut traces down to adulteration percentages 0.01% Contrary to PLSR, IDC does not require a calibration set, but uses both expert and experimental information and suitable for quantification of an interest compound in complex matrices. The obtained results shows the feasibility of using HSI systems for the detection of peanut traces in conjunction with chemical procedures, such as RT-PCR and ELISA
Resumo:
- NIR Hyperspectral images (1000-2200 nm) allowed the detection of peanut traces down to adulteration percentages 0.01 % - Determination coefficient of R2= 0.946 was found for the quantification of peanut adulteration from 10% to 0.1%. - The obtained results shows the feasibility of using HSI systems for the detection of peanut traces in conjuction with chemical procedures, such as RT-PCR and ELISA to facilitate quality control surveyance on food product processing lines.
Resumo:
In current industrial environments there is an increasing need for practical and inexpensive quality control systems to detect the foreign food materials in powder food processing lines. This demand is especially important for the detection of product adulteration with traces of highly allergenic products, such as peanuts and tree nuts. Manufacturing industries dealing with the processing of multiple powder food products present a substantial risk for the contamination of powder foods with traces of tree nuts and other adulterants, which might result in unintentional ingestion of nuts by the sensitised population. Hence, the need for an in-line system to detect nut traces at the early stages of food manufacturing is of crucial importance. In this present work, a feasibility study of a spectral index for revealing adulteration of tree nut and peanut traces in wheat flour samples with hyperspectral images is reported. The main nuts responsible for allergenic reactions considered in this work were peanut, hazelnut and walnut. Enhanced contrast between nuts and wheat flour was obtained after the application of the index. Furthermore, the segmentation of these images by selecting different thresholds for different nut and flour mixtures allowed the identification of nut traces in the samples. Pixels identified as nuts were counted and compared with the actual percentage of peanut adulteration. As a result, the multispectral system was able to detect and provide good visualisation of tree nut and peanut trace levels down to 0.01% by weight. In this context, multispectral imaging could operate in conjuction with chemical procedures, such as Real Time Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay to save time, money and skilled labour on product quality control. This approach could enable not only a few selected samples to be assessed but also to extensively incorporate quality control surveyance on product processing lines.
Resumo:
The use of a common environment for processing different powder foods in the industry has increased the risk of finding peanut traces in powder foods. The analytical methods commonly used for detection of peanut such as enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) represent high specificity and sensitivity but are destructive and time-consuming, and require highly skilled experimenters. The feasibility of NIR hyperspectral imaging (HSI) is studied for the detection of peanut traces down to 0.01% by weight. A principal-component analysis (PCA) was carried out on a dataset of peanut and flour spectra. The obtained loadings were applied to the HSI images of adulterated wheat flour samples with peanut traces. As a result, HSI images were reduced to score images with enhanced contrast between peanut and flour particles. Finally, a threshold was fixed in score images to obtain a binary classification image, and the percentage of peanut adulteration was compared with the percentage of pixels identified as peanut particles. This study allowed the detection of traces of peanut down to 0.01% and quantification of peanut adulteration from 10% to 0.1% with a coefficient of determination (r2) of 0.946. These results show the feasibility of using HSI systems for the detection of peanut traces in conjunction with chemical procedures, such as RT-PCR and ELISA to facilitate enhanced quality-control surveillance on food-product processing lines.
Resumo:
In current industrial environments there is an increasing need for practical and inexpensive quality control systems to detect the foreign food materials in powder food processing lines. This demand is especially important for the detection of product adulteration with traces of highly allergenic products, such as peanuts and tree nuts. Manufacturing industries dealing with the processing of multiple powder food products present a substantial risk for the contamination of powder foods with traces of tree nuts and other adulterants, which might result in unintentional ingestion of nuts by the sensitised population. Hence, the need for an in-line system to detect nut traces at the early stages of food manufacturing is of crucial importance. In this present work, a feasibility study of a spectral index for revealing adulteration of tree nut and peanut traces in wheat flour samples with hyperspectral images is reported. The main nuts responsible for allergenic reactions considered in this work were peanut, hazelnut and walnut. Enhanced contrast between nuts and wheat flour was obtained after the application of the index. Furthermore, the segmentation of these images by selecting different thresholds for different nut and flour mixtures allowed the identification of nut traces in the samples. Pixels identified as nuts were counted and with the actual percentage of peanut adulteration. As a result, the multispectral system was able to detect and provide good visualisation of tree nut and peanut trace levels down to 0.01% by weight. In this context, multispectral imaging could operate in conjuction with chemical procedures, such as Real Time Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay to save time, money and skilled labour on product quality control. This approach could enable not only a few selected samples to be assessed but also to extensively incorporate quality control surveyance on product processing lines.