865 resultados para Filmic approach methods
Resumo:
A Multimodal Seaport Container Terminal (MSCT) is a complex system which requires careful planning and control in order to operate efficiently. It consists of a number of subsystems that require optimisation of the operations within them, as well as synchronisation of machines and containers between the various subsystems. Inefficiency in the terminal can delay ships from their scheduled timetables, as well as cause delays in delivering containers to their inland destinations, both of which can be very costly to their operators. The purpose of this PhD thesis is to use Operations Research methodologies to optimise and synchronise these subsystems as an integrated application. An initial model is developed for the overall MSCT; however, due to a large number of assumptions that had to be made, as well as other issues, it is found to be too inaccurate and infeasible for practical use. Instead, a method of developing models for each subsystem is proposed that then be integrated with each other. Mathematical models are developed for the Storage Area System (SAS) and Intra-terminal Transportation System (ITTS). The SAS deals with the movement and assignment of containers to stacks within the storage area, both when they arrive and when they are rehandled to retrieve containers below them. The ITTS deals with scheduling the movement of containers and machines between the storage areas and other sections of the terminal, such as the berth and road/rail terminals. Various constructive heuristics are explored and compared for these models to produce good initial solutions for large-sized problems, which are otherwise impractical to compute by exact methods. These initial solutions are further improved through the use of an innovative hyper-heuristic algorithm that integrates the SAS and ITTS solutions together and optimises them through meta-heuristic techniques. The method by which the two models can interact with each other as an integrated system will be discussed, as well as how this method can be extended to the other subsystems of the MSCT.
Resumo:
Effective enterprise information security policy management requires review and assessment activities to ensure information security policies are aligned with business goals and objectives. As security policy management involves the elements of policy development process and the security policy as output, the context for security policy assessment requires goal-based metrics for these two elements. However, the current security management assessment methods only provide checklist types of assessment that are predefined by industry best practices and do not allow for developing specific goal-based metrics. Utilizing theories drawn from literature, this paper proposes the Enterprise Information Security Policy Assessment approach that expands on the Goal-Question-Metric (GQM) approach. The proposed assessment approach is then applied in a case scenario example to illustrate a practical application. It is shown that the proposed framework addresses the requirement for developing assessment metrics and allows for the concurrent undertaking of process-based and product-based assessment. Recommendations for further research activities include the conduct of empirical research to validate the propositions and the practical application of the proposed assessment approach in case studies to provide opportunities to introduce further enhancements to the approach.
Resumo:
This paper seeks to explain the lagging productivity in Singapore’s manufacturing noted in the statements of the Economic Strategies Committee Report 2010. Two methods are employed: the Malmquist productivity to measure total factor productivity change and Simar and Wilson’s (J Econ, 136:31–64, 2007) bootstrapped truncated regression approach. In the first stage, the nonparametric data envelopment analysis is used to measure technical efficiency. To quantify the economic drivers underlying inefficiencies, the second stage employs a bootstrapped truncated regression whereby bias-corrected efficiency estimates are regressed against explanatory variables. The findings reveal that growth in total factor productivity was attributed to efficiency change with no technical progress. Most industries were technically inefficient throughout the period except for ‘Pharmaceutical Products’. Sources of efficiency were attributed to quality of worker and flexible work arrangements while incessant use of foreign workers lowered efficiency.
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
The scheduling of locomotive movements on cane railways has proven to be a very complex task. Various optimisation methods have been used over the years to try and produce an optimised schedule that eliminates or minimises bin supply delays to harvesters and the factory, while minimising the number of locomotives, locomotive shifts and cane bins, and also the cane age. This paper reports on a new attempt to develop an automatic scheduler using a mathematical model solved using mixed integer programming and constraint programming approaches and blocking parallel job shop scheduling fundamentals. The model solution has been explored using conventional constraint programming search techniques and found to produce a reasonable schedule for small-scale problems with up to nine harvesters. While more effort is required to complete the development of the full model with metaheuristic search techniques, the work completed to date gives confidence that the metaheuristic techniques will provide near optimal solutions in reasonable time.
Resumo:
Nutrition interventions in the form of both self-management education and individualised diet therapy are considered essential for the long-term management of type 2 diabetes mellitus (T2DM). The measurement of diet is essential to inform, support and evaluate nutrition interventions in the management of T2DM. Barriers inherent within health care settings and systems limit ongoing access to personnel and resources, while traditional prospective methods of assessing diet are burdensome for the individual and often result in changes in typical intake to facilitate recording. This thesis investigated the inclusion of information and communication technologies (ICT) to overcome limitations to current approaches in the nutritional management of T2DM, in particular the development, trial and evaluation of the Nutricam dietary assessment method (NuDAM) consisting of a mobile phone photo/voice application to assess nutrient intake in a free-living environment with older adults with T2DM. Study 1: Effectiveness of an automated telephone system in promoting change in dietary intake among adults with T2DM The effectiveness of an automated telephone system, Telephone-Linked Care (TLC) Diabetes, designed to deliver self-management education was evaluated in terms of promoting dietary change in adults with T2DM and sub-optimal glycaemic control. In this secondary data analysis independent of the larger randomised controlled trial, complete data was available for 95 adults (59 male; mean age(±SD)=56.8±8.1 years; mean(±SD)BMI=34.2±7.0kg/m2). The treatment effect showed a reduction in total fat of 1.4% and saturated fat of 0.9% energy intake, body weight of 0.7 kg and waist circumference of 2.0 cm. In addition, a significant increase in the nutrition self-efficacy score of 1.3 (p<0.05) was observed in the TLC group compared to the control group. The modest trends observed in this study indicate that the TLC Diabetes system does support the adoption of positive nutrition behaviours as a result of diabetes self-management education, however caution must be applied in the interpretation of results due to the inherent limitations of the dietary assessment method used. The decision to use a close-list FFQ with known bias may have influenced the accuracy of reporting dietary intake in this instance. This study provided an example of the methodological challenges experienced with measuring changes in absolute diet using a FFQ, and reaffirmed the need for novel prospective assessment methods capable of capturing natural variance in usual intakes. Study 2: The development and trial of NuDAM recording protocol The feasibility of the Nutricam mobile phone photo/voice dietary record was evaluated in 10 adults with T2DM (6 Male; age=64.7±3.8 years; BMI=33.9±7.0 kg/m2). Intake was recorded over a 3-day period using both Nutricam and a written estimated food record (EFR). Compared to the EFR, the Nutricam device was found to be acceptable among subjects, however, energy intake was under-recorded using Nutricam (-0.6±0.8 MJ/day; p<0.05). Beverages and snacks were the items most frequently not recorded using Nutricam; however forgotten meals contributed to the greatest difference in energy intake between records. In addition, the quality of dietary data recorded using Nutricam was unacceptable for just under one-third of entries. It was concluded that an additional mechanism was necessary to complement dietary information collected via Nutricam. Modifications to the method were made to allow for clarification of Nutricam entries and probing forgotten foods during a brief phone call to the subject the following morning. The revised recording protocol was evaluated in Study 4. Study 3: The development and trial of the NuDAM analysis protocol Part A explored the effect of the type of portion size estimation aid (PSEA) on the error associated with quantifying four portions of 15 single foods items contained in photographs. Seventeen dietetic students (1 male; age=24.7±9.1 years; BMI=21.1±1.9 kg/m2) estimated all food portions on two occasions: without aids and with aids (food models or reference food photographs). Overall, the use of a PSEA significantly reduced mean (±SD) group error between estimates compared to no aid (-2.5±11.5% vs. 19.0±28.8%; p<0.05). The type of PSEA (i.e. food models vs. reference food photograph) did not have a notable effect on the group estimation error (-6.7±14.9% vs. 1.4±5.9%, respectively; p=0.321). This exploratory study provided evidence that the use of aids in general, rather than the type, was more effective in reducing estimation error. Findings guided the development of the Dietary Estimation and Assessment Tool (DEAT) for use in the analysis of the Nutricam dietary record. Part B evaluated the effect of the DEAT on the error associated with the quantification of two 3-day Nutricam dietary records in a sample of 29 dietetic students (2 males; age=23.3±5.1 years; BMI=20.6±1.9 kg/m2). Subjects were randomised into two groups: Group A and Group B. For Record 1, the use of the DEAT (Group A) resulted in a smaller error compared to estimations made without the tool (Group B) (17.7±15.8%/day vs. 34.0±22.6%/day, p=0.331; respectively). In comparison, all subjects used the DEAT to estimate Record 2, with resultant error similar between Group A and B (21.2±19.2%/day vs. 25.8±13.6%/day; p=0.377 respectively). In general, the moderate estimation error associated with quantifying food items did not translate into clinically significant differences in the nutrient profile of the Nutricam dietary records, only amorphous foods were notably over-estimated in energy content without the use of the DEAT (57kJ/day vs. 274kJ/day; p<0.001). A large proportion (89.6%) of the group found the DEAT helpful when quantifying food items contained in the Nutricam dietary records. The use of the DEAT reduced quantification error, minimising any potential effect on the estimation of energy and macronutrient intake. Study 4: Evaluation of the NuDAM The accuracy and inter-rater reliability of the NuDAM to assess energy and macronutrient intake was evaluated in a sample of 10 adults (6 males; age=61.2±6.9 years; BMI=31.0±4.5 kg/m2). Intake recorded using both the NuDAM and a weighed food record (WFR) was coded by three dietitians and compared with an objective measure of total energy expenditure (TEE) obtained using the doubly labelled water technique. At the group level, energy intake (EI) was under-reported to a similar extent using both methods, with the ratio of EI:TEE was 0.76±0.20 for the NuDAM and 0.76±0.17 for the WFR. At the individual level, four subjects reported implausible levels of energy intake using the WFR method, compared to three using the NuDAM. Overall, moderate to high correlation coefficients (r=0.57-0.85) were found across energy and macronutrients except fat (r=0.24) between the two dietary measures. High agreement was observed between dietitians for estimates of energy and macronutrient derived for both the NuDAM (ICC=0.77-0.99; p<0.001) and WFR (ICC=0.82-0.99; p<0.001). All subjects preferred using the NuDAM over the WFR to record intake and were willing to use the novel method again over longer recording periods. This research program explored two novel approaches which utilised distinct technologies to aid in the nutritional management of adults with T2DM. In particular, this thesis makes a significant contribution to the evidence base surrounding the use of PhRs through the development, trial and evaluation of a novel mobile phone photo/voice dietary record. The NuDAM is an extremely promising advancement in the nutritional management of individuals with diabetes and other chronic conditions. Future applications lie in integrating the NuDAM with other technologies to facilitate practice across the remaining stages of the nutrition care process.
Resumo:
Determining the optimal of black-start strategies is very important for speeding the restoration speed of a power system after a global blackout. Most existing black-start decision-making methods are based on the assumption that all indexes are independent of each other, and little attention has been paid to the group decision-making method which is more reliable. Given this background, the intuitionistic fuzzy set and further intuitionistic fuzzy Choquet integral operator are presented, and a black-start decision-making method based on this integral operator is presented. Compared to existing methods, the proposed algorithm cannot only deal with the relevance among the indexes, but also overcome some shortcomings of the existing methods. Finally, an example is used to demonstrate the proposed method. © 2012 The Institution of Engineering and Technology.
Resumo:
The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.
Resumo:
Traditional analytic models for power system fault diagnosis are usually formulated as an unconstrained 0–1 integer programming problem. The key issue of the models is to seek the fault hypothesis that minimizes the discrepancy between the actual and the expected states of the concerned protective relays and circuit breakers. The temporal information of alarm messages has not been well utilized in these methods, and as a result, the diagnosis results may be not unique and hence indefinite, especially when complicated and multiple faults occur. In order to solve this problem, this paper presents a novel analytic model employing the temporal information of alarm messages along with the concept of related path. The temporal relationship among the actions of protective relays and circuit breakers, and the different protection configurations in a modern power system can be reasonably represented by the developed model, and therefore, the diagnosed results will be more definite under different circumstances of faults. Finally, an actual power system fault was served to verify the proposed method.
Resumo:
The Australian e-Health Research Centre and Queensland University of Technology recently participated in the TREC 2011 Medical Records Track. This paper reports on our methods, results and experience using a concept-based information retrieval approach. Our concept-based approach is intended to overcome specific challenges we identify in searching medical records. Queries and documents are transformed from their term-based originals into medical concepts as de ned by the SNOMED-CT ontology. Results show our concept-based approach performed above the median in all three performance metrics: bref (+12%), R-prec (+18%) and Prec@10 (+6%).
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
The benefits of applying tree-based methods to the purpose of modelling financial assets as opposed to linear factor analysis are increasingly being understood by market practitioners. Tree-based models such as CART (classification and regression trees) are particularly well suited to analysing stock market data which is noisy and often contains non-linear relationships and high-order interactions. CART was originally developed in the 1980s by medical researchers disheartened by the stringent assumptions applied by traditional regression analysis (Brieman et al. [1984]). In the intervening years, CART has been successfully applied to many areas of finance such as the classification of financial distress of firms (see Frydman, Altman and Kao [1985]), asset allocation (see Sorensen, Mezrich and Miller [1996]), equity style timing (see Kao and Shumaker [1999]) and stock selection (see Sorensen, Miller and Ooi [2000])...
Resumo:
Dengue virus is the most significant human viral pathogen spread by the bite of an infected mosquito. With no vaccine or antiviral therapy currently available, disease prevention relies largely on surveillance and mosquito control. Preventing the onset of dengue outbreaks and effective vector management would be considerably enhanced through surveillance of dengue virus prevalence in natural mosquito populations. However, current approaches to the identification of virus in field-caught mosquitoes require relatively slow and labor intensive techniques such as virus isolation or RT-PCR involving specialized facilities and personnel. A rapid and portable method for detecting dengue virus-infected mosquitoes is described. Using a hand held battery operated homogenizer and a dengue diagnostic rapid strip the viral protein NS1 was detected as a marker of dengue virus infection. This method could be performed in less than 30 min in the field, requiring no downstream processing, and is able to detect a single infected mosquito in a pool of at least 50 uninfected mosquitoes. The method described in this study allows rapid, real-time monitoring of dengue virus presence in mosquito populations and could be a useful addition to effective monitoring and vector control responses.
Resumo:
A new dualscale modelling approach is presented for simulating the drying of a wet hygroscopic porous material that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of wood at low temperatures and is valid in the so-called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradients of moisture content and temperature on the microscopic field using suitably-defined periodic boundary conditions, which allows the macroscopic mass and thermal fluxes to be defined as averages of the microscopic fluxes over the unit cell. This novel formulation accounts for the intricate coupling of heat and mass transfer at the microscopic scale but reduces to a classical homogenisation approach if a linear relationship is assumed between the microscopic gradient and flux. Simulation results for a sample of spruce wood highlight the potential and flexibility of the new dual-scale approach. In particular, for a given unit cell configuration it is not necessary to propose the form of the macroscopic fluxes prior to the simulations because these are determined as a direct result of the dual-scale formulation.
Resumo:
Background On-site wastewater treatment system (OWTS) siting, design and management has traditionally been based on site specific conditions with little regard to the surrounding environment or the cumulative effect of other systems in the environment. The general approach has been to apply the same framework of standards and regulations to all sites equally, regardless of the sensitivity, or lack thereof, to the receiving environment. Consequently, this has led to the continuing poor performance and failure of on-site systems, resulting in environmental and public health consequences. As a result, there is increasing realisation that more scientifically robust evaluations in regard to site assessment and the underlying ground conditions are needed. Risk-based approaches to on-site system siting, design and management are considered the most appropriate means of improvement to the current standards and codes for on-site wastewater treatment systems. The Project Research in relation to this project was undertaken within the Gold Coast City Council region, the major focus being the semi-urban, rural residential and hinterland areas of the city that are not serviced by centralised treatment systems. The Gold Coast has over 15,000 on-site systems in use, with approximately 66% being common septic tank-subsurface dispersal systems. A recent study evaluating the performance of these systems within the Gold Coast area showed approximately 90% were not meeting the specified guidelines for effluent treatment and dispersal. The main focus of this research was to incorporate strong scientific knowledge into an integrated risk assessment process to allow suitable management practices to be set in place to mitigate the inherent risks. To achieve this, research was undertaken focusing on three main aspects involved with the performance and management of OWTS. Firstly, an investigation into the suitability of soil for providing appropriate effluent renovation was conducted. This involved detailed soil investigations, laboratory analysis and the use of multivariate statistical methods for analysing soil information. The outcomes of these investigations were developed into a framework for assessing soil suitability for effluent renovation. This formed the basis for the assessment of OWTS siting and design risks employed in the developed risk framework. Secondly, an assessment of the environmental and public health risks was performed specifically related the release of contaminants from OWTS. This involved detailed groundwater and surface water sampling and analysis to assess the current and potential risks of contamination throughout the Gold Coast region. Additionally, the assessment of public health risk incorporated the use of bacterial source tracking methods to identify the different sources of fecal contamination within monitored regions. Antibiotic resistance pattern analysis was utilised to determine the extent of human faecal contamination, with the outcomes utilised for providing a more indicative public health assessment. Finally, the outcomes of both the soil suitability assessment and ground and surface water monitoring was utilised for the development of the integrated risk framework. The research outcomes achieved through this project enabled the primary research aims and objects to be accomplished. This in turn would enable Gold Coast City Council to provide more appropriate assessment and management guidelines based on robust scientific knowledge which will ultimately ensure that the potential environmental and public health impacts resulting from on-site wastewater treatment is minimised. As part of the implementation of suitable management strategies, a critical point monitoring program (CPM) was formulated. This entailed the identification of the key critical parameters that contribute to the characterised risks at monitored locations within the study area. The CPM will allow more direct procedures to be implemented, targeting the specific hazards at sensitive areas throughout Gold Coast region.