935 resultados para Film analysis
Resumo:
An experimental investigation was made of forced convection film boiling of subcooled water around a sphere at atmospheric pressure. The water was sufficiently cool that the vapor condensed before leaving the film with the result that no vapor bubbles left the film. The experimental runs were made using inductively heated spheres at temperatures above 740°C. and using inlet water temperatures between 15°C. and 27°C. The spheres used had diameters of 1/2 inch, 9/16 inch, and 3/8 inch and were supported by the liquid flow. Reynolds numbers between 60 and 700 were used.
Analysis of the collected non-condensables indicated that oxygen and nitrogen dissolved in the water accumulated within the vapor film and that hetrogeneous chemical reactions occurred at the sphere surface. An iron-steam reaction resulted in more than 20% by volume hydrogen in the film at wall temperatures above 900°C. At temperatures near 1100°C. more than 80% by volume of the film was composed of hydrogen. It was found that gold plating of the sphere could eliminate this reaction.
Material and energy balances were used to derive equations which may be used to predict the overall average heat transfer coefficients for subcooled film boiling around a sphere. These equations include the effect of dissolved gases in the water. Equations also were derived which may be used to predict the composition of the film for cases in which an equilibrium exists between the dissolved gases and the gases in the film.
The derived equations were compared to the experimental results. It was found that a correlation existed between the Nusselt number for heat transfer from the vapor-liquid interface into the liquid and the Reynolds number, liquid Prandtl number product. In addition, it was found that the percentage of dissolved oxygen removed during the film boiling could be predicted to within 10%.
Resumo:
The conventional TbFeCo magneto-optical (MO) medium has a relatively smaller Kerr rotation angle in the blue region than in the red. With the recording wavelength gradually moving to the short wavelength, if TbFeCo is still used as recording medium, the conventional MO disk structure must be optimized to get a larger carrier to noise ratio (CNR). Sabi et al. have found that adding a metal layer attached to the TbFeCo film as thermal control layer is a useful way to get a high CNR. In this paper, we proved this through calculation, and carried out optimization of the new type of disk. Calculation results showed that the new structure is useful in preventing an excessive temperature increase, and has a better thermal response. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thin films of four nickel(II) and copper(II) hydrazone complexes, which will hopefully be used as recording layers for the next-generation of high-density recordable disks, were prepared by using the spin-coating method. Absorption spectra of the thin films on K9 optical glass substrates in the 300-700 nm wavelength region were measured. Optical constants (complex refractive indices N) and thickness d of the thin films prepared on single-crystal silicon substrates in the 275-675 nm wavelength region were investigated on a rotating analyzer-polarizer scanning ellipsometer by fitting the measured ellipsometric angles (Psi(lambda) and Delta(lambda)) with a 3-layer model (Si/dye film/air). The dielectric functions epsilon and absorption coefficients alpha as a function of the wavelength were then calculated. Additionally, a design to achieve high reflectivity and optimum dye film thickness with an appropriate reflective layer was performed with the Film Wizard software using a multilayered model (PC substrate/reflective layer/dye film/air) at 405 nm wavelength.
Resumo:
Fast moving arrays of periodic sub-diffraction-limit pits were dynamically read out via a silver thin film. The mechanism of the dynamic readout is analysed and discussed in detail, both experimentally and theoretically. The analysis and experiment show that, in the course of readout, surface plasmons can be excited at the silver/air interface by the focused laser beam and amplified by the silver thin film. The surface plasmons are transmitted into the substrate/silver interface with a large enhancement. The surface waves at the substrate/silver interface are scattered by the sinusoidal pits of sub-diffraction-limit size. The scattered waves are collected by a converging lens and guided into the detector for the readout.
Resumo:
In laser applications, resolutions beyond the diffraction limit can be obtained with a thin film of strong optical nonlinear effect. The optical index of the silicon thin film is modified with the incident laser beam as a function of the local field intensity n(r) similar to E-2(r). For ultrathin films of thickness d << lambda the transmitted light through the film forms a profile of annular rings. Therefore, the device can be related to the realization of super-resolution with annular pupils. Theoretical analysis shows that the focused light spot appears significantly reduced in comparison with the diffraction limit that is determined by the laser wavelength and the numerical aperture of the converging lens. Analysis on the additional optical transfer function due to the thin film confirms that the resolving power is improved in the high spatial frequency region. (C) 2007 Published by Elsevier B.V.
Resumo:
The effect of laser fluence on the crystallization of amorphous silicon irradiated by a frequency-doubled Nd:YAG laser is studied both theoretically and experimentally. An effective numerical model is set up to predict the melting threshold and the optimized laser fluence for the crystallization of 200-nm-thick amorphous silicon. The variation of the temperature distribution with time and the melt depth is analyzed. Besides the model, the Raman spectra of thin films treated with different fluences are measured to confirm the phase transition and to determine the optimized fluence. The calculating results accord well with those obtained from the experimental data in this research. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sol-gel derived TiO2/SiO2/ormosil hybrid planar waveguides have been deposited on soda-lime glass slides and silicon substrates, films were heat treated at 150 degreesC for 2 h or dried at room temperature. Different amounts of water were added to sols to study their impacts on microstructures and optical properties of films. The samples were characterized by m-line spectroscopy, Fourier transform infrared spectroscopy (FT-IR), UV/VIS/NIR spectrophotometer (UV-vis), atomic force microscopy (AFM), thermal analysis instrument and scattering-detection method. The refractive index was found to have the largest value at the molar ratio H2O/OR = 1 in sol (OR means -OCH3, -OC2H5 and -OC4H9 in the sol), whereas the thickest film appears at H2O/OR = 1/2. The rms surface roughness of all the films is lower than 1.1 nm, and increases with the increase of water content in sol. Higher water content leads to higher attenuation of film. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Used in chirped-pulse amplification system and based on multi-layer thin film stack, pulse compressor gratings (PCG) are etched by ion-beam and holographic techniques. Diffraction efficiency and laser-induced damage threshold rely on the structural parameters of gratings. On the other hand, they depend greatly on the design of multi-layer. A theoretic design is given for dielectric multi-layer, which is exposed at 413.1 nm and used at 1053 nm. The influences of coating design on optical characters are described in detail. The analysis shows that a coating stack of H3L (H2L) (boolean AND) 9H0.5L2.01H meets the specifications of PCG well. And there is good agreement of transmission between experimental and the theoretic design. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Negative ion element impurities breakdown model in HfO2 thin film was reported in this paper. The content of negative ion elements were detected by glow discharge mass spectrum analysis (GDMS); HfO2 thin films were deposited by the electron-beam evaporation method. The weak absorption and laser induced damage threshold (LIDT) of HfO2 thin films were measured to testify the negative ion element impurity breakdown model. It was found that the LIDT would decrease and the absorption would increase with increasing the content of negative ion element. These results indicated that negative ion elements were harmful impurities and would speed up the damage of thin film. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N-1 sublayers of uniform thickness) and subsurface layer (separated into N-2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried Out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and Substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mixed phase carbon-diamond films which consist of small grain diamond in an a:C matrix were deposited on polished Si using a radio frequency CH4 Ar plasma CVD deposition process. Ellipsometry, surface profilometry, scanning electron microscopy (SEM) and spectrophotometry were used to analyse these films. Film thicknesses were typically 50-100 nm with a surface roughness of ± 30 A ̊ over centimetre length scans. SEM analysis showed the films were smooth and pinhole free. The Si substrate was etched using backside masking and a directional etch to give taut carbon-diamond membranes on a Si grid. Spectrophotometry was used to analyse the optical properties of these membranes. Band gap control was achieved by varying the dc bias of the deposition process. Band gaps of 1.2 eV to 4.0 eV were achieved in these membranes. A technique for controlling the compressive stress in the films, which can range from 0.02 to 7.5 GPa has been employed. This has allowed the fabrication of thin, low stress, high band gap membranes that are extremely tough and chemically inert. Such carbon-diamond membranes seem promising for applications as windows in analytical instruments. © 1992.
Resumo:
FBAR devices with carbon nanotube (CNT) electrodes have been developed withthe aim of taking advantage of the low density and high acoustic impedance ofthe CNTs compared to other known materials. The influence of the CNTs on thefrequency response of the FBAR devices was studied by comparing two identicalsets of devices, one set comprised FBARs fabricated with chromium/gold bilayerelectrodes, and the second set comprised FBARs fabricated with CNT electrodes.It was found that the CNTs had a significant effect on attenuating travellingwaves at the surface of the FBARs membranes due to their high elastic stiffness.Finite element analysis of the devices fabricated was carried out using COMSOLMultiphysics, and the numerical results confirmed the experimental resultsobtained. © 2010 IEEE.
Resumo:
Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics.
Resumo:
Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics. © 2012 Elsevier B.V.