983 resultados para Failure Modes
Resumo:
Axle bearing damage with possible catastrophic failures can cause severe disruptions or even dangerous derailments, potentially causing loss of human life and leading to significant costs for railway infrastructure managers and rolling stock operators. Consequently the axle bearing damage process has safety and economic implications on the exploitation of railways systems. Therefore it has been the object of intense attention by railway authorities as proved by the selection of this topic by the European Commission in calls for research proposals. The MAXBE Project (http://www.maxbeproject.eu/), an EU-funded project, appears in this context and its main goal is to develop and to demonstrate innovative and efficient technologies which can be used for the onboard and wayside condition monitoring of axle bearings. The MAXBE (interoperable monitoring, diagnosis and maintenance strategies for axle bearings) project focuses on detecting axle bearing failure modes at an early stage by combining new and existing monitoring techniques and on characterizing the axle bearing degradation process. The consortium for the MAXBE project comprises 18 partners from 8 member states, representing operators, railway administrations, axle bearing manufactures, key players in the railway community and experts in the field of monitoring, maintenance and rolling stock. The University of Porto is coordinating this research project that kicked-off in November 2012 and it is completed on October 2015. Both on-board and wayside systems are explored in the project since there is a need for defining the requirement for the onboard equipment and the range of working temperatures of the axle bearing for the wayside systems. The developed monitoring systems consider strain gauges, high frequency accelerometers, temperature sensors and acoustic emission. To get a robust technology to support the decision making of the responsible stakeholders synchronized measurements from onboard and wayside monitoring systems are integrated into a platform. Also extensive laboratory tests were performed to correlate the in situ measurements to the status of the axle bearing life. With the MAXBE project concept it will be possible: to contribute to detect at an early stage axle bearing failures; to create conditions for the operational and technical integration of axle bearing monitoring and maintenance in different European railway networks; to contribute to the standardization of the requirements for the axle bearing monitoring, diagnosis and maintenance. Demonstration of the developed condition monitoring systems was performed in Portugal in the Northern Railway Line with freight and passenger traffic with a maximum speed of 220 km/h, in Belgium in a tram line and in the UK. Still within the project, a tool for optimal maintenance scheduling and a smart diagnostic tool were developed. This paper presents a synthesis of the most relevant results attained in the project. The successful of the project and the developed solutions have positive impact on the reliability, availability, maintainability and safety of rolling stock and infrastructure with main focus on the axle bearing health.
Resumo:
The objective of this thesis is the investigation of the Mode-I fracture mechanics parameters of quasi-brittle materials to shed light onto the influence of the width and size of the specimen on the fracture response of notched beams. To further the knowledge on the fracture process, 3D digital image correlation (DIC) was employed. A new method is proposed to determine experimentally the critical value of the crack opening, which is then used to determine the size of the fracture process zone (FPZ). In addition, the Mode-I fracture mechanics parameters are compared with the Mode-II interfacial properties of composites materials that feature as matrices the quasi-brittle materials studied in Mode-I conditions. To investigate the Mode II fracture parameters, single-lap direct shear tests are performed. Notched concrete beams with six cross-sections has been tested using a three-point bending (TPB) test set-up (Mode-I fracture mechanics). Two depths and three widths of the beam are considered. In addition to concrete beams, alkali-activated mortar beams (AAMs) that differ by the type and size of the aggregates have been tested using the same TPB set-up. Two dimensions of AAMs are considered. The load-deflection response obtained from DIC is compared with the load-deflection response obtained from the readings of two linear variable displacement transformers (LVDT). Load responses, peak loads, strain profiles along the ligament from DIC, fracture energy and failure modes of TPB tests are discussed. The Mode-II problem is investigated by testing steel reinforced grout (SRG) composites bonded to masonry and concrete elements under single-lap direct shear tests. Two types of anchorage systems are proposed for SRG reinforced masonry and concrete element to study their effectiveness. An indirect method is proposed to find the interfacial properties, compare them with the Mode-I fracture properties of the matrix and to model the effect of the anchorage.
Resumo:
In recent years, the seismic vulnerability of existing masonry buildings has been underscored by the destructive impacts of earthquakes. Therefore, Fibre Reinforced Cementitious Matrix (FRCM) retrofitting systems have gained prominence due to their high strength-to-weight ratio, compatibility with substrates, and potential reversibility. However, concerns linger regarding the durability of these systems when subjected to long-term environmental conditions. This doctoral dissertation addressed these concerns by studying the effects of mild temperature variations on three FRCM systems, featuring basalt, glass, and aramid fibre textiles with lime-based mortar matrices. The study subjected various specimens, including mortar triplets, bare textile specimens, FRCM coupons, and single-lap direct shear wallets, to thermal exposure. A novel approach utilizing embedded thermocouple sensors facilitated efficient monitoring and active control of the conditioning process. A shift in the failure modes was obtained in the single lap-direct shear tests, alongside a significant impact on tensile capacity for both textiles and FRCM coupons. Subsequently, bond tests results were used to indirectly calibrate an analytical approach based on mode-II fracture mechanics. A comparison between Cohesive Material Law (CML) functions at various temperatures was conducted for each of the three systems, demonstrating a good agreement between the analytical model and experimental curves. Furthermore, the durability in alkaline environment of two additional FRCM systems, characterized by basalt and glass fibre textiles with lime-based mortars, was studied through an extensive experimental campaign. Tests conducted on single yarn and textile specimens after exposure at different durations and temperatures revealed a significant impact on tensile capacity. Additionally, FRCM coupons manufactured with conditioned textile were tested to understand the influence of aged textile and curing environment on the final tensile behavior. These results contributed significantly to the existing knowledge on FRCM systems and could be used to develop a standardized alkaline testing protocol, still lacking in the scientific literature.
Resumo:
La thérapie de resynchronisation cardiaque (CRT) est un traitement qui diminue la mortalité et améliore la qualité de vie des patients atteints d’insuffisance cardiaque et présentant un dyssynchronisme de la contraction ventriculaire gauche. Malgré le succès de cette thérapie, plus de 30% des patients ne présentent pas l’amélioration désirée. Plusieurs études portant sur le synchronisme électrique ou mécanique de la contraction ont été effectuées mais peu d’entres elles se sont attardées sur le couplage électromécanique à l'échelle macroscopique. Ce projet a comme objectif d’observer le comportement électromécanique des ventricules canins en présence d’un resynchronisateur cardiaque. Un logiciel a été développé pour permettre l’analyse des informations provenant de la cartographie endocardique sans contact et de la ventriculographie isotopique tomographique chez 12 sujets canins insuffisants. Pour observer la réponse mécanique suite à l’activation électrique, nous avons premièrement recalé les surfaces issues des 2 modalités. Ensuite, nous avons défini les limites du cycle cardiaque, analysé les signaux électriques et les courbes de déplacement de la paroi endocardique. Le début de la contraction est défini par un déplacement radial de 10% vers le centre du ventricule. Les résultats démontrent que la durée d’activation du ventricule gauche et la largeur du QRS augmentent en présence d’une stimulation externe et que les délais électromécaniques sont indépendants dans les modes de stimulation étudiés (sinusal, LVbasal, RVapex ou BIV) avec une moyenne de 84,56±7,19 ms. Finalement, nous avons noté que la stimulation basolatérale procure une fonction cardiaque optimale malgré une durée prolongée du QRS.
Resumo:
The consequences of the use of embedded crack finite elements with uniform discontinuity modes (opening and sliding) to simulate crack propagation in concrete are investigated. It is shown the circumstances in which the consideration of uniform discontinuity modes is not suitable to accurately model the kinematics induced by the crack and must be avoided. It is also proposed a technique to embed cracks with non-uniform discontinuity modes into standard displacement-based finite elements to overcome the shortcomings of the uniform discontinuity modes approach.
Resumo:
Purpose: Automated weaning modes are available in some mechanical ventilators, but no studies compared them hitherto. We compared the performance of 3 automated modes under standard and challenging situations. Methods: We used a lung simulator to compare 3 automated modes, adaptive support ventilation (ASV), mandatory rate ventilation (MRV), and Smartcare, in 6 situations, weaning success, weaning failure, weaning success with extreme anxiety, weaning success with Cheyne-Stokes, weaning success with irregular breathing, and weaning failure with ineffective efforts. Results: The 3 modes correctly recognized the situations of weaning success and failure, even when anxiety or irregular breathing were present but incorrectly recognized weaning success with Cheyne-Stokes. MRV incorrectly recognized weaning failure with ineffective efforts. Time to pressure support (PS) stabilization was shorter for ASV (1-2 minutes for all situations) and MRV (1-7 minutes) than for Smartcare (8-78 minutes). ASV had higher rates of PS oscillations per 5 minutes (4-15), compared with Smartcare (0-1) and MRV (0-12), except when extreme anxiety was present. Conclusions: Smartcare, ASV, and MRV were equally able to recognize weaning success and failure, despite the presence of anxiety or irregular breathing but performed incorrectly in the presence of Cheyne-Stokes. PS behavior over the time differs among modes, with ASV showing larger and more frequent PS oscillations over the time. Clinical studies are needed to confirm our results. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: The controversial effects promoted by cardiac resynchronization therapy (CRT) on the ventricular repolarization (VR) have motivated VR evaluation by body surface potential mapping (BSPM) in CRT patients. Methods: Fifty-two CRT patients, mean age 58.8 +/- 12.3 years, 31 male, LVEF 27.5 +/- 9.2, NYHA III-IV heart failure with QRS181.5 +/- 14.2 ms, underwent 87-lead BSPM in sinus rhythm (BASELINE) and biventricular pacing (BIV). Measurements of mean and corrected QT intervals and dispersion, mean and corrected T peak end intervals and their dispersion, and JT intervals characterized global and regional (RV, Intermediate, and LV regions) ventricular repolarization response. Results: Global QTm (P < 0.001) and QTcm (P < 0.05) were decreased in BIV; QTm was similar across regions in both modes (P = ns); QTcm values were lower in RV/LV than in Intermediate region in BASELINE and BIV (P < 0.001); only RV/Septum showed a significant difference (P < 0.01) in the BIV mode. QTD values both of BASELINE (P < 0.01) and BIV (P < 0.001) were greater in the Intermediate than in the LV region. CRT effect significantly reduced global/regional QTm and QTcm values. QTD was globally decreased in RV/LV (Intermediate: P = ns). BIV mode significantly reduced global T peak end mean and corrected intervals and their dispersion. JT values were not significant. Conclusions: Ventricular repolarization parameters QTm, QTcm, and QTD global/regional values, as assessed by BSPM, were reduced in patients under CRT with severe HF and LBBB. Greater recovery impairment in the Intermediate region was detected by the smaller variation of its dispersion.
Resumo:
AIMS Device-based pacing-induced diaphragmatic stimulation (PIDS) may have therapeutic potential for chronic heart failure (HF) patients. We studied the effects of PIDS on cardiac function and functional outcomes. METHODS AND RESULTS In 24 chronic HF patients with CRT, an additional electrode was attached to the left diaphragm. Randomized into two groups, patients received the following PIDS modes for 3 weeks in a different sequence: (i) PIDS off (control group); (ii) PIDS 0 ms mode (PIDS simultaneously with ventricular CRT pulse); or (iii) PIDS optimized mode (PIDS with optimized delay to ventricular CRT pulse). For PIDS optimization, acoustic cardiography was used. Effects of each PIDS mode on dyspnoea, power during exercise testing, and LVEF were assessed. Dyspnoea improved with the PIDS 0 ms mode (P = 0.057) and the PIDS optimized mode (P = 0.034) as compared with the control group. Maximal power increased from median 100.5 W in the control group to 104.0 W in the PIDS 0 ms mode (P = 0.092) and 109.5 W in the PIDS optimized mode (P = 0.022). Median LVEF was 33.5% in the control group, 33.0% in the PIDS 0 ms mode, and 37.0% in the PIDS optimized mode (P = 0.763 and P = 0.009 as compared with the control group, respectively). PIDS was asymptomatic in all patients. CONCLUSION PIDS improves dyspnoea, working capacity, and LVEF in chronic HF patients over a 3 week period in addition to CRT. This pilot study demonstrates proof of principle of an innovative technology which should be confirmed in a larger sample. TRIAL REGISTRATION NCT00769678.
Resumo:
Non-failure analysis aims at inferring that predicate calis in a program will never fail. This type of information has many applications in functional/logic programming. It is essential for determining lower bounds on the computational cost of calis, useful in the context of program parallelization, instrumental in partial evaluation and other program transformations, and has also been used in query optimization. In this paper, we re-cast the non-failure analysis proposed by Debray et al. as an abstract interpretation, which not only allows to investígate it from a standard and well understood theoretical framework, but has also several practical advantages. It allows us to incorpórate non-failure analysis into a standard, generic abstract interpretation engine. The analysis thus benefits from the fixpoint propagation algorithm, which leads to improved information propagation. Also, the analysis takes advantage of the multi-variance of the generic engine, so that it is now able to infer sepárate non-failure information for different cali patterns. Moreover, the implementation is simpler, and allows to perform non-failure and covering analyses alongside other analyses, such as those for modes and types, in the same framework. Finally, besides the precisión improvements and the additional simplicity, our implementation (in the Ciao/CiaoPP multiparadigm programming system) also shows better efRciency.
Resumo:
The deformation and failure micromechanisms of a hybrid 3D woven composite were studied in tension. Plain and open-hole composite coupons were tested in tension until failure in the fill and warp directions, as well as fiber tows extracted from the dry fabric and impregnated with the matrix. The macroscopic evolution of damage in the composite coupons was assessed by means of periodic unloading–reloading (to obtain the elastic modulus and the residual strain), whereas the microscopic mechanism were established by means of X-ray computed microtomography. To this end, specimens were periodically removed from the mechanical testing machine and infiltrated with ZnI-containing liquid to assess the main damage modes as a function of the applied strain. The experimental observations and the predictions of an isostrain model were used to understand the key factors controlling the elastic modulus, strength and notch sensitivity of hybrid 3D woven composites in tension. It was found that the full contribution of the glass fibers to the composite strength was not employed, due to the premature fracture of the carbon fibers, but their presence increased the fracture strain and the energy dissipated during fracture. Thus, hybridization of the 3D woven composite led to a notch-insensitive behavior as demonstrated by open-hole tests
Resumo:
National Highway Safety Bureau, Washington, D.C.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Rotational degrees of freedom in Cosserat continua give rise to higher fracture modes. Three new fracture modes correspond to the cracks that are surfaces of discontinuities in the corresponding components of independent Cosserat rotations. We develop a generalisation of J- integral that includes these additional degrees of freedom. The obtained path-independent integrals are used to develop a criterion of crack propagation for a special type of failure in layered materials with sliding layers. This fracture propagates as a progressive bending failure of layers – a “bending crack that is, a crack that can be represented as a distribution of discontinuities in the layer bending. This situation is analysed using a 2D Cosserat continuum model. Semi-infinite bending crack normal to layering is considered. The moment stress concentrates along the line that is a continuation of the crack and has a singularity of the power − 1/4. A model of process zone is proposed for the case when the breakage of layers in the process of bending crack propagation is caused by a crack (microcrack in our description) growing across the layer adjacent to the crack tip. This growth is unstable (in the moment-controlled loading), which results in a typical descending branch of moment stress – rotation discontinuity relationship and hence in emergence of a Barenblatt-type process zone at the tip of the bending crack.
Resumo:
The work constitutes a study of the strength of mild steel fillet welds subject to static loading, and the behaviour of flange welded beam-column connections under combined bending and shear. Tests are conducted on short welds in the as-welded and stress relieved conditions, and also on full-size beam-column connections. It is shown that welds under compression have a lower strength than when under tension. Failure of the fillet weld is initiated at the weld root, the important factor controlling the initiation being weld ductility. The greater the residual stress, the lower the weld ductility and ultimate strength. Thermal stress relieving increases strength by as much as 30%. Weld failure plane is rarely at the throat and varies from 0° to 45° depending upon loading condition. Failure plane average stresses are related by a circular function which is expressed in terms of externally applied forces at limit state. The tension weld of a flange-welded beam-column connection always fails before the compression weld. The shear load sharing between the welds is a complex function of elastic compression of the web, elastic/plastic deformation of the flanges, load/deformation characteristics, and the type of load application. Bearing forces between the compression flange and column face produce low level bearing stresses and frictional forces which make a negligible contribution to shear load resistance. Three modes of connection failure are possible; 'end mode', 'bending mode' and 'shear mode', with a sudden change taking place between the two latter.
Resumo:
This thesis proposes that despite many experimental studies of thinking, and the development of models of thinking, such as Bruner's (1966) enactive, iconic and symbolic developmental modes, the imagery and inner verbal strategies used by children need further investigation to establish a coherent, theoretical basis from which to create experimental curricula for direct improvement of those strategies. Five hundred and twenty-three first, second and third year comprehensive school children were tested on 'recall' imagery, using a modified Betts Imagery Test; and a test of dual-coding processes (Paivio, 1971, p.179), by the P/W Visual/Verbal Questionnaire, measuring 'applied imagery' and inner verbalising. Three lines of investigation were pursued: 1. An investigation a. of hypothetical representational strategy differences between boys and girls; and b. the extent to which strategies change with increasing age. 2. The second and third year children's use of representational processes, were taken separately and compared with performance measures of perception, field independence, creativity, self-sufficiency and self-concept. 3. The second and third year children were categorised into four dual-coding strategy groups: a. High Visual/High Verbal b. Low Visual/High Verbal c. High Visual/Low Verbal d. Low Visual/Low Verbal These groups were compared on the same performance measures. The main result indicates that: 1. A hierarchy of dual-coding strategy use can be identified that is significantly related (.01, Binomial Test) to success or failure in the performance measures: the High Visual/High Verbal group registering the highest scores, the Low Visual/High Verbal and High Visual/Low Verbal groups registering intermediate scores, and the Low Visual/Low Verbal group registering the lowest scores on the performance measures. Subsidiary results indicate that: 2. Boys' use of visual strategies declines, and of verbal strategies increases, with age; girls' recall imagery strategy increases with age. Educational implications from the main result are discussed, the establishment of experimental curricula proposed, and further research suggested.