981 resultados para Factor VIII deficiency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). A mutation in a novel, tissue-specific, paired-like homeodomain transcription factor, termed Prophet of Pit-1 (PROP1), has been identified as causing the Ames dwarf (df) mouse phenotype, and thereafter, different PROP1 gene alterations have been found in humans with CPHD. We report on the follow-up of two consanguineous families (n = 12), with five subjects affected with CPHD (three males and two females) caused by the same nucleotide C to T transition, resulting in the substitution of Arg-->Cys in PROP1 at codon 120. Importantly, there is a variability of phenotype, even among patients with the same mutation. The age at diagnosis was dependent on the severity of symptoms, ranging from 9 months to 8 yr. Although in one patient TSH deficiency was the first symptom of the disorder, all patients became symptomatic by exhibiting severe growth retardation and failure to thrive, which was mainly caused by GH deficiency (n = 4). The secretion of the pituitary-derived hormones (GH, PRL, TSH, LH, and FSH) declined gradually with age, following a different pattern in each individual; therefore, the deficiencies developed over a variable period of time. All of the subjects entered puberty spontaneously, and the two females also experienced menarche and periods before a replacement therapy was necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Approximately 20% of all colorectal cancers are hypothesized to arise from the "serrated pathway" characterized by mutation in BRAF, high-level CpG Island Methylator Phenotype, and microsatellite instability/mismatch repair (MMR)-deficiency. MMR-deficient cancers show frequent losses of Cdx2, a homeodomain transcription factor. Here, we determine the predictive value of Cdx2 expression for MMR-deficiency and investigate changes in expression between primary cancers and matched lymph node metastases. Methods: Immunohistochemistry for Cdx2, Mlh1, Msh2, Msh6, and Pms2 was performed on whole tissue sections from 201 patients with primary colorectal cancer and 59 cases of matched lymph node metastases. Receiver operating characteristic curve analysis and Area under the Curve (AUC) were investigated; association of Cdx2 with clinicopathological features and patient survival was carried out. Results: Loss of Cdx2 expression was associated with higher tumor grade (p = 0.0002), advanced pT (p = 0.0166), and perineural invasion (p = 0.0228). Cdx2 loss was an unfavorable prognostic factor in univariate (p = 0.0145) and multivariate [p = 0.0427; HR (95% CI): 0.58 (0.34-0.98)] analysis. The accuracy (AUC) for discriminating MMR-proficient and - deficient cancers was 87% [OR (95% CI): 0.96 (0.95-0.98); p < 0.0001]. Specificity and negative predictive value for MMR-deficiency was 99.1 and 96.3%. One hundred and seventy-four patients had MMR-proficient cancers, of which 60 (34.5%) showed Cdx2 loss. Cdx2 loss in metastases was related to MMR-deficiency (p < 0.0001). There was no difference in expression between primary tumors and matched metastases. Conclusion: Loss of Cdx2 is a sensitive and specific predictor of MMR-deficiency, but is not limited to these tumors, suggesting that events "upstream" of the development of microsatellite instability may impact Cdx2 expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial meningitis is a severe inflammatory disease of the central nervous system and is characterized by massive infiltration of granulocytes into the cerebrospinal fluid (CSF). To assess the role of NADPH oxidase-derived reactive oxygen species (ROS) in pneumococcal meningitis, mice deficient in either the gp91 subunit (essential for functioning of the phagocyte enzyme) or the p47 subunit (essential for functioning of homologous enzymes in nonphagocytic cells) were intracisternally infected with live Streptococcus pneumoniae, and defined disease parameters were measured during the acute stage of infection. While none of the parameters measured (including CSF bacterial titers) were significantly different in gp91(-/-) and wild-type mice, the infection in p47(-/-) mice was associated with significantly increased inflammation of the subarachnoid and ventricular space, disruption of the blood-brain barrier, and the presence of interleukin-1 beta, tumor necrosis factor alpha, and matrix metalloproteinase 9 in the cortex. These changes were associated with approximately 10-fold-higher CSF bacterial titers in p47(-/-) mice than in wild-type mice (P < 0.001). In contrast to infection with live bacteria, the inflammatory response, including CSF leukocytosis, was significantly attenuated in p47(-/-) mice (but not gp91(-/-) mice) challenged with a fixed number of heat-inactivated pneumococci. Impairment of the host defense appeared to be responsible for the higher bacterial titers in p47(-/-) mice. Therefore, these results indicate that ROS generated by a gp91-independent NADPH oxidase(s) are important for establishing an adequate inflammatory response to pneumococcal CSF infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steroidogenic factor 1 (NR5A1/SF-1) mutations usually manifest in 46,XY individuals with variable degrees of disordered sex development and in 46,XX women with ovarian insufficiency. So far, there is no genotype-phenotype correlation. The broad spectrum of phenotype with NR5A1 mutations may be due to a second hit in a gene with similar function to NR5A1/SF-1. Liver receptor homologue-1 (LRH-1/NR5A2) might be a good candidate. We performed in vitro studies for the interplay between SF-1, LRH-1 and DAX-1, expression profiles in human steroidogenic tissues, and NR5A2 genetic studies in a cohort (11 patients, 8 relatives, 11 families) harboring heterozygote NR5A1/SF-1 mutations. LRH-1 isoforms transactivate the CYP17A1 and HSD3B2 promoters similarly to SF-1 and compensate for SF-1 deficiency. DAX-1 inhibits SF-1- and LRH-1-mediated transactivation. LRH-1 is found expressed in human adult and fetal adrenals and testes. However, no NR5A2/LRH-1 mutations were detected in 14 individuals with heterozygote NR5A1/SF-1 mutations. These findings demonstrate that in vitro LRH-1 can act like SF-1 and compensate for its deficiency. Expression of LRH-1 in fetal testis suggests a role in male gonadal development. However, as we found no NR5A2/LRH-1 mutations, the 'second genetic hit' in SF-1 patients explaining the broad phenotypic variability remains elusive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi instead unmasks defective thrombus resolution resulting from impaired production of type III collagen, which causes deranged remodeling of matrix, persistent inflammation, and dysregulated behavior by resident myofibroblasts, culminating in the development of penetrating neovascular channels that disrupt the mechanical integrity of the arterial wall. Vascular injury and thrombus formation following ligation of the carotid artery reveals an abnormal persistence and elevated burden of occlusive thrombi at 21 post-operative days in vessels from Col3a1+/- mice, as opposed to near complete resolution and formation of a patent and mature neointima in wild-type mice. At only 14 days, both groups harbor comparable burdens of resolving thrombi, but wild-type mice increase production of type III collagen in actively resolving tissues, while mutant mice do not. Rather, thrombi in mutant mice contain higher burdens of macrophages and proliferative myofibroblasts, which persist through 21 days while wild-type thrombi, inflammatory cells, and proliferation all regress. At the same time that increased macrophage burdens were observed at 14 and 21 days post ligation, the medial layer of mutant arterial walls concurrently harbored a significantly higher incidence of penetrating neovessels compared with those in wild-type mice. To assess whether limited type III collagen production alters myofibroblast behavior, fibroblasts from vEDS patients with COL3A1 missense mutations were seeded into three-dimensional fibrin gel constructs and stimulated with transforming growth factor-β1 to initiate myofibroblast differentiation. Although early signaling events occur similarly in all cell lines, late extracellular matrix- and mechanically-regulated events like transcriptional upregulation of type I and type III collagen secretion are delayed in mutant cultures, while transcription of genes encoding intracellular contractile machinery is increased. Sophisticated imaging of collagen synthesized de novo by resident myofibroblasts visualizes complex matrix reorganization by control cells but only meager remodeling by COL3A1 mutant cells, concordant with their compensatory contraction to maintain tension in the matrix. Finally, administration of immunosuppressive rapamycin to mice following carotid ligation sufficiently halts the initial inflammatory phase of thrombus resolution and fully prevents both myofibroblast migration into the thrombus and the differential development of neovessels between mutant and wild-type mice, suggesting that pathological defects in mutant arteries develop secondarily to myofibroblast dysfunction and chronic inflammatory stimulation, rather than as a manifestation of tissue fragility. Together these data establish evidence that pathological defects in the vessel wall architecture develop in mutant arteries as sequelae to abnormal healing and remodeling responses activated by arterial injury. Thus, these data support the hypothesis that events threatening the integrity of type III collagen-deficient vessels develop not as a result of inherent tissue weakness and fragility at baseline but instead as an episodic byproduct of abnormally persistent granulation tissue and fibroproliferative intravascular remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gliomas are primary central nervous system (CNS) neoplasms that are believed to arise from astrocytes, oligodendrocytes or their precursors. Gliomas can be classified into two major histopathological groups: oligodendroglial and astroglial tumors. The most malignant of the astroglial tumors is glioblastoma multiforme (GBM). A great deal of genetic and epigenetic alterations have been implicated in gliomagenesis. In particular, PDGF signaling is frequently over-activated in a large number of human gliomas. In order to gain insights into the biology of gliomas, we manage to model human gliomas in mice using a somatic gene transfer approach—RCAS/TVA system. In our previous study, combined activation of AKT and RAS pathways gave rise to glioblastomas from CNS progenitors. In the present study, we demonstrate that in vivo autocrine PDGF stimulation induces oligodendrogliomas and mixed oligoastrocytomas from CNS progenitors and differentiated astrocytes respectively. In culture autocrine PDGF stimulation dedifferentiates astrocytes into progenitor-like cells and blockade of PDGF signaling reverses these phenotypic changes. Experimental disruption of cell cycle arrest pathway, such as Ink4a-Arf loss, is not required for the initiation of PDGF-induced gliomagenesis; instead, this mutation contributes to the tumor progression by enhancing tumor malignancy and shortening tumor latency. P53 deficiency does not promote the PDGF-induced gliomagenesis. In addition, 1p and 19q, often deleted in human oligodendrogliomas, remain intact in these PDGF-induced gliomas. Therefore, our studies suggest that autocrine PDGF stimulation alone may be sufficient to induce gliomagenesis. In contrast to transient stimulation in vitro, constitutive PDGF stimulation activates neither AKT nor RAS/MAPK pathways during gliomagenesis. This results in the formation of oligodendrogliomas, instead of glioblastomas. Sustained activation of the AKT pathway converts PDGF-induced oligodendrogliomas into astrocytomas. Our studies suggest that constitutive PDGF stimulation is not equivalent to transient PDGF stimulation, and that a transition between oligodendroglial and astroglial tumors in humans may be possible, depending on additional alterations. In summary, PDGF signaling plays a pivotal role in gliomagenesis in the mouse, and its hyperactivity is capable of contributing to both oligodendroglial and astroglial tumorigenesis. ^