983 resultados para FU(p)-Space
Resumo:
Let H be a two-dimensional complex Hilbert space and P(3H) the space of 3-homogeneous polynomials on H. We give a characterization of the extreme points of its unit ball, P(3H), from which we deduce that the unit sphere of P(3H) is the disjoint union of the sets of its extreme and smooth points. We also show that an extreme point of P(3H) remains extreme as considered as an element of L(3H). Finally we make a few remarks about the geometry of the unit ball of the predual of P(3H) and give a characterization of its smooth points.
Resumo:
This article demonstrates a visual study on the educational space in which the teaching of body percussion is carried out in universities. The methodological framework is chosen by the Visual Arts Based Educational Research, using the work of an artist as a conceptual and methodological model. The research remains notable (1) due to the theoretical reference to the BAPNE method, (2) due to the visual reference to the work of Isidro Blasco – especially with the piece “Shanghai Planet 2009” - ;(3) due to the parallelisms established between the object of study in this investigation -the spatial analysis- and the focuses of interest revealed by the art critics in relation to the work of this artist. By means of a visual speech formed with 7 photo-collages the relationship between body and educational space is visualized in the basic disposition of circular learning. The visual constructions by way of photo-collage and their aesthetic charge brings us closer to the intimacy of the educational space, in the style in which it is distributed to the students in the music classroom, the materialization of interpersonal relationships, the occupied and empty volumes.
Resumo:
This paper considers a Q-ary orthogonal direct-sequence code-division multiple-access (DS-CDMA) system with high-rate space-time linear dispersion codes (LDCs) in time-varying Rayleigh fading multiple-input-multiple-output (MIMO) channels. We propose a joint multiuser detection, LDC decoding, Q-ary demodulation, and channel-decoding algorithm and apply the turbo processing principle to improve system performance in an iterative fashion. The proposed iterative scheme demonstrates faster convergence and superior performance compared with the V-BLAST-based DS-CDMA system and is shown to approach the single-user performance bound. We also show that the CDMA system is able to exploit the time diversity offered by the LDCS in rapid-fading channels.
Resumo:
Objectives: Acute respiratory distress syndrome (ARDS) is characterized by alveolar-capillary barrier damage. Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of ARDS. In the Beta Agonists in Acute Lung Injury Trial, intravenous salbutamol reduced extravascular lung water (EVLW) in patients with ARDS at day 4 but not inflammatory cytokines or neutrophil recruitment. We hypothesized that salbutamol reduces MMP activity in ARDS.
Methods: MMP-1/-2/-3/-7/-8/-9/-12/-13 was measured in supernatants of distal lung epithelial cells, type II alveolar cells, and bronchoalveolar lavage (BAL) fluid from patients in the Beta Agonists in Acute Lung Injury study by multiplex bead array and tissue inhibitors of metalloproteinases (TIMPs)-1/-2 by enzyme-linked immunosorbent assay. MMP-9 protein and activity levels were further measured by gelatin zymography and fluorokine assay.
Measurements and Main Results: BAL fluid MMP-1/-2/-3 declined by day 4, whereas total MMP-9 tended to increase. Unexpectedly, salbutamol augmented MMP-9 activity. Salbutamol induced 33.7- and 13.2-fold upregulation in total and lipocalin-associated MMP-9, respectively at day 4, compared with 2.0- and 1.3-fold increase in the placebo group, p < 0.03. Salbutamol did not affect BAL fluid TIMP-1/-2. Net active MMP-9 was higher in the salbutamol group (4222 pg/mL, interquartile range: 513-7551) at day 4 compared with placebo (151 pg/mL, 124-2108), p = 0.012. Subjects with an increase in BAL fluid MMP-9 during the 4-day period had lower EVLW measurements than those in whom MMP-9 fell (10 vs. 17 mL/kg, p = 0.004): change in lung water correlated inversely with change in MMP-9, r = -.54, p = 0.0296. Salbutamol up-regulated MMP-9 and down-regulated TIMP-1/-2 secretion in vitro by distal lung epithelial cells. Inhibition of MMP-9 activity in cultures of type II alveolar epithelial cells reduced wound healing.
Conclusions: Salbutamol specifically up-regulates MMP-9 in vitro and in vivo in patients with ARDS. Up-regulated MMP-9 is associated with a reduction in EVLW. MMP-9 activity is required for alveolar epithelial wound healing in vitro. Data suggest MMP-9 may have a previously unrecognized beneficial role in reducing pulmonary edema in ARDS by improving alveolar epithelial healing.
Resumo:
We present seven light curves of the exoplanet system HAT-P-3, taken as part of a transit timing programme using the rapid imager to search for exoplanets instrument on the Liverpool Telescope. The light curves are analysed using a Markov chain Monte Carlo algorithm to update the parameters of the system. The inclination is found to be i = 86.75+0.22-0.21°, the planet-star radius ratio to be Rp/R* = 0.1098+0.0010-0.0012 and the stellar radius to be R* = 0.834+0.018-0.026Rsolar, consistent with previous results but with a significant improvement in the precision. Central transit times and uncertainties for each light curve are also determined, and a residual permutation algorithm is used as an independent check on the errors. The transit times are found to be consistent with a linear ephemeris, and a new ephemeris is calculated as Tc(0) = 2454856.70118 +/- 0.00018 HJD and P = 2.899738 +/- 0.000007 d. Model timing residuals are fitted to the measured timing residuals to place upper mass limits for a hypothetical perturbing planet as a function of the period ratio. These show that we have probed for planets with masses as low as 0.33 and 1.81 M? in the interior and exterior 2:1 resonances, respectively, assuming the planets are initially in circular orbits.
Resumo:
We present the first near-infrared Hubble diagram for Type II-P supernovae (SNe), to further explore their value as distance indicators. We use a modified version of the standardized candle method, which relies on the tight correlation between the absolute magnitudes of Type II-P SNe and their expansion velocities during the plateau phase. Although our sample contains only 12 II-P SNe and they are necessarily local (z
The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae
Resumo:
We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is m(min) = 8.5(-1.5)(+1) M-circle dot and the maximum mass for II-P progenitors is m(max) = 16.5 +/- 1.5 M-circle dot, assuming a Salpeter initial mass function holds for the progenitor population (in the range Gamma = -1.35(-0.7)(+0.3)). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25 M-circle dot and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 M-circle dot. The reason we have not detected any high-mass red supergiant progenitors above 17 M-circle dot is unclear, but we estimate that it is statistically significant at 2.4 sigma confidence. Two simple reasons for this could be that we have systematically underestimated the progenitor masses due to dust extinction or that stars between 17-25 M-circle dot produce other kinds of SNe which are not II-P. We discuss these possibilities and find that neither provides a satisfactory solution. We term this discrepancy the 'red supergiant problem' and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. We compare the Ni-56 masses ejected in the SNe to the progenitor mass estimates and find that low-luminosity SNe with low Ni-56 production are most likely to arise from explosions of low-mass progenitors near the mass threshold that can produce a core-collapse.
Resumo:
Abundant evidence for the occurrence of modulated envelope plasma wave packets is provided by recent satellite missions. These excitations are characterized by a slowly varying localized envelope structure, embedding the fast carrier wave, which appears to be the result of strong modulation of the wave amplitude. This modulation may be due to parametric interactions between different modes or, simply, to the nonlinear (self-)interaction of the carrier wave. A generic exact theory is presented in this study, for the nonlinear self-modulation of known electrostatic plasma modes, by employing a collisionless fluid model. Both cold (zero-temperature) and warm fluid descriptions are discussed and the results are compared. The (moderately) nonlinear oscillation regime is investigated by applying a multiple scale technique. The calculation leads to a Nonlinear Schrodinger-type Equation (NLSE), which describes the evolution of the slowly varying wave amplitude in time and space. The NLSE admits localized envelope (solitary wave) solutions of bright(pulses) or dark- (holes, voids) type, whose characteristics (maximum amplitude, width) depend on intrinsic plasma parameters. Effects like amplitude perturbation obliqueness (with respect to the propagation direction), finite temperature and defect (dust) concentration are explicitly considered. Relevance with similar highly localized modulated wave structures observed during recent satellite missions is discussed.
Resumo:
The parametric coupling between large amplitude magnetic field-aligned circularly polarized electromagnetic ion-cyclotron (EMIC) waves and ponderomotively driven ion-acoustic perturbations in magnetized space plasmas is considered. A cubic nonlinear Schrodinger equation for the modulated EMIC wave envelope is derived, and then solved analytically. The modulated EMIC waves are found to be stable (unstable) against ion-acoustic density perturbations, in the subsonic (supersonic, respectively) case, and they may propagate as "supersonic bright" ("subsonic dark", i.e. "black" or "grey") type envelope solitons, i.e. electric field pulses (holes, voids), associated with (co-propagating) density humps. Explicit bright and dark (black/grey) envelope excitation profiles are presented, and the relevance of our investigation to space plasmas is discussed.