962 resultados para FERMENTING YEAST


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium signals trigger the translocation of the Prz1 transcription factor from the cytoplasm to the nucleus. The process is regulated by the calciumactivated phosphatase calcineurin, which activates Prz1 thereby maintaining active transcription during calcium signalling. When calcium signalling ceases, Prz1 is inactivated by phosphorylation and exported to the cytoplasm. In budding yeast and mammalian cells, different kinases have been reported to counter calcineurin activity and regulate nuclear export. Here, we show that the Ca2+/calmodulin-dependent kinase Cmk1 is first phosphorylated and activated by the newly identified kinase CaMKK2 homologue, Ckk2, in response to Ca2+. Then, active Cmk1 binds, phosphorylates and inactivates Prz1 transcription activity whilst at the same time cmk1 expression is enhanced by Prz1 in response to Ca2+. Furthermore, Cdc25 phosphatase is also phosphorylated by Cmk1, inducing cell cycle arrest in response to an increase in Ca2+. Moreover, cmk1 deletion shows a high tolerance to chronic exposure to Ca2+, due to the lack of cell cycle inhibition and elevated Prz1 activity. This work reveals that Cmk1 kinase activated by the newly identified Ckk2 counteracts calcineurin function by negatively regulating Prz1 activity which in turn is involved in activating cmk1 gene transcription. These results are the first insights into Cmk1 and Ckk2 function in Schizosaccharomyces pombe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fission yeast Schizosaccharomyces pombe has been an invaluable model system in studying the regulation of the mitotic cell cycle progression, the mechanics of cell division and cell polarity. Furthermore, classical experiments on its sexual reproduction have yielded results pivotal to current understanding of DNA recombination and meiosis. More recent analysis of fission yeast mating has raised interesting questions on extrinsic stimuli response mechanisms, polarized cell growth and cell-cell fusion. To study these topics in detail we have developed a simple protocol for microscopy of the entire sexual lifecycle. The method described here is easily adjusted to study specific mating stages. Briefly, after being grown to exponential phase in a nitrogen-rich medium, cell cultures are shifted to a nitrogen-deprived medium for periods of time suited to the stage of the sexual lifecycle that will be explored. Cells are then mounted on custom, easily built agarose pad chambers for imaging. This approach allows cells to be monitored from the onset of mating to the final formation of spores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was conducted into the production of xylose by acid hydrolysis of rice husks and its subsequent bioconversion to xylitol. The parameters were optimised using the response surface methodology. The fermentation stage took place with the aid of the yeast species Candida guilliermondii and Candida tropicalis. An evaluation of the influence of several biomass pre-treatments was also performed. The effects of the acid concentration and hydrolysate pH on xylitol global yield were also assessed, and the highest yield of xylitol was 64.0% (w/w). The main products, xylose and xylitol, were identified and quantified by means of liquid chromatography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify formulations of biological agents that enable survival, stability and a good surface distribution of the antagonistic agent, studies that test different application vehicles are necessary. The efficiency of two killer yeasts, Wickerhamomyces anomalus (strain 422) and Meyerozyma guilliermondii (strain 443), associated with five different application vehicles, was assessed for the protection of postharvest papayas. In this study, after 90 days of incubation at 4ºC, W. anomalus (strain 422) and M. guilliermondii (strain 443) were viable with all application vehicles tested. Fruits treated with different formulations (yeasts + application vehicles) had a decreased severity of disease (by at least 30%) compared with untreated fruits. The treatment with W. anomalus (strain 422) + 2% starch lowered disease occurrence by 48.3%. The most efficient treatments using M. guilliermondii (strain 443) were those with 2% gelatin or 2% liquid carnauba wax, both of which reduced anthracnose by 50% in postharvest papayas. Electron micrographs of the surface tissues of the treated fruits showed that all application vehicles provided excellent adhesion of the yeast to the surface. Formulations based on starch (2%), gelatin (2%) and carnauba wax (2%) were the most efficient at controlling fungal diseases in postharvest papayas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT2-Phenylethanol (PE) is an aromatic alcohol with a characteristic odor of roses, widely used in food industry to modify certain aroma compositions in formulations with fruit, jam, pudding, and chewing gums, and also in cosmetic and fragrance industry. This compound occurs naturally in low concentrations in some essential oils from flowers and plants. An alternative to plants extraction are biotechnological processes. This study evaluated 2-phenylethanol’s production in cultivation of Saccharomyces cerevisiae in cassava wastewater originated from starch industry. The substrate was supplemented with glucose and L-phenylalanine in order to obtain higher 2-phenylethanol concentrations and better efficiency in glucose/2-phenylethanol conversion. It was performed using Rotatable Center Composite Design and response surface analysis. Cultures were performed under aerobic conditions in a batch system in Erlenmeyer flasks containing 50 mL of medium in shaker at 150 rpm and 24 ± 1 ºC. The highest PE values ​​were obtained with supplementation of 20.0 g.L-1 of glucose and 5.5 g.L-1 of L-phenylalanine, which has been experimentally validated, obtaining a PE production of 1.33 g.L-1 and PE/glucose yield factor of 0.070 g.g-1, equivalent to 74.3 and 89.7% ​​of desirability values according to the validated model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular substances released into the medium during rehydration of dry yeast cells can significantly improve the quality of a synthetic medium. Acceleration of yeast growth in this medium and increased yield of biomass are observed simultaneously. The change in the molecular arrangement of intracellular membranes as a result of the strong dehydration of live organisms is a negative phenomenon that reduces the level of cell viability. However, this phenomenon also represents an adaptive mechanism which facilitates the maintenance of population viability as a whole under extreme environmental conditions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mutants of Saccharomyces cerevisiae assigned to complementation group G199 are deficient in mitochondrial respiration and lack a functional cytochrome oxidase complex. Recombinant plasmids capable of restoring respiration were cloned by transformation of mutants of this group with a yeast genomic library. Sequencing indicated that a 2.1-kb subclone encompasses the very end (last 11 amino acids) of the PET111 gene, the COX7 gene and a new gene (YMR255W) of unknown function that potentially codes for a polypeptide of 188 amino acids (about 21.5 kDa) without significant homology to any known protein. We have shown that the respiratory defect corresponding to group G199 is complemented by plasmids carrying only the COX7 gene. The gene YMR255W was inactivated by one-step gene replacement and the disrupted strain was viable and unaffected in its ability to grow in a variety of different test media such as minimal or complete media using eight distinct carbon sources at three pH values and temperatures. Inactivation of this gene also did not affect mating or sporulation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions of viral proteins play an important role in the virus life cycle, especially in capsid assembly. Andean potato mottle comovirus (APMoV) is a plant RNA virus with a virion formed by two coat proteins (CP42 and CP22). Both APMoV coat protein open reading frames were cloned into pGBT9 and pGAD10, two-hybrid system vectors. HF7c yeast cells transformed with the p9CP42 construct grew on yeast dropout selection media lacking tryptophan and histidine. Clones also exhibited ß-galactosidase activity in both qualitative and quantitative assays. These results suggest that CP42 protein contains an amino acid motif able to activate transcription of His3 and lacZ reporter genes in Saccharomyces cerevisiae. Several deletions of the CP42 gene were cloned into the pGBT9 vector to locate the region involved in this activation. CP42 constructions lacking 12 residues from the C-terminal region and another one with 267 residues deleted from the N-terminus are still able to activate transcription of reporter genes. However, transcription activation was not observed with construction p9CP42deltaC57, which does not contain the last 57 amino acid residues. These results demonstrate that a transcription activation domain is present at the C-terminus of CP42 between residues 267 and 374.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergy is characterized by T helper (Th) 2-type immune response after encounter with an allergen leading to subsequent immunoglobulin (Ig) E-mediated hypersensitivity reaction and further allergic inflammation. Allergen-specific immunotherapy (SIT) balances the Th2-biased immunity towards Th1 and T regulatory responses. Adjuvants are used in allergen preparations to intensify and modify SIT. β-(1,2)-oligomannoside constituents present in Candida albicans (C. albicans) cell wall possess Th1-type immunostimulatory properties. The aim of this thesis was to develop a β-(1,2)-linked carbohydrate compound with known structure and anti-allergic properties to be applied as an adjuvant in SIT. First the immunostimulatory properties of various fungal extracts were studied. C. albicans appeared to be the most promising Th1-inducing extract, which led to the synthesis of various mono- or divalent oligomannosides designed on the basis of C. albicans. These carbohydrates did not induce strong cytokine production in human peripheral blood mononuclear cell (PBMC) cultures. In contrast to earlier reports using native oligosaccharides from C. albicans, synthetic -(1,2)-linked mannotetraose did not induce any tumor necrosis factor production in murine macrophages. Next, similarities with synthesized divalent mannosides and the antigenic epitopes of β-(1,2)-linked C. albicans mannan were investigated. Two divalent compounds inhibited specific IgG antibodies binding to below 3 kDa hydrolyzed mannan down to the level of 30–50% showing similar antigenicity to C. albicans. Immunomodulatory properties of synthesized carbohydrate assemblies ranging from mono- to pentavalent were evaluated. A trivalent acetylated dimannose (TADM) induced interleukin-10 (IL-10) and interferon-γ responses. TADM also suppressed birch pollen induced IL-4 and IL-5 responses in allergen (Bet v) stimulated PBMCs of birch pollen allergic subjects. This suppression was stronger with TADM than with other used adjuvants, immunostimulatory oligonucleotides and monophosphoryl lipid A. In a murine model of asthma, the allergen induced inflammatory responses could also be suppressed by TADM on cytokine and antibody levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP) on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm) yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to examine the feasibility of DNA microarray technology in an attempt to construct an evaluation system for determining gas toxicity using high-pressure conditions, as it is well known that pressure increases the concentration of a gas. As a first step, we used yeast (Saccharomyces cerevisiae) as the indicator organism and analyzed the mRNA expression profiles after exposure of yeast cells to nitrogen gas. Nitrogen gas was selected as a negative control since this gas has low toxicity. Yeast DNA microarray analysis revealed induction of genes whose products were localized to the membranes, and of genes that are involved in or contribute to energy production. Furthermore, we found that nitrogen gas significantly affected the transport system in the cells. Interestingly, nitrogen gas also resulted in induction of cold-shock responsive genes. These results suggest the possibility of applying yeast DNA microarray to gas bioassays up to 40 MPa. We therefore think that "bioassays" are ideal for use in environmental control and protection studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whey is produced in large amounts by cheese industries. This by-product can be used for biomass production by yeast cultivation, resulting in commercially attractive products. The use of yeast extracts as source of flavour enhancer consists of an expansible market, encouraged by costumer's choice for natural additives. The development of a suitable and economically viable project for the generation of valued-added by-products, may allow the dairy industry to diversify their portfolio and increase their rentability.