998 resultados para FCE I
Resumo:
Trichoderma reesei Rut-C30 is used widely as an expression host for various gene products. We have explored cellular effects caused by the expression of a mutant form of cellobiohydrolase I (CBHI), the major secreted protein of T. reesei using biochemical and transcriptomic analyses and confocal laser scanning microscopy. The mutated CBHI was tagged fluorescently with Venus to establish the subcellular location of the fusion protein and its potential association with the proteasome, an organelle assigned for the disposal of misfolded proteins. Expression of the mutant CBHI in the high protein-secreting host Rut-C30 caused physiological changes in the fungal hyphae, affected protein secretion and elicited ER stress. A massive upregulation of UPR- and ERAD-related genes sec61, der1, uba1, bip1, pdi1, prp1, cxl1 and lhs1 was observed by qRT-PCR in the CBHIΔ4-Venus strain with four mutations introduced in the DNA encoding the core domain of CBHI. Further stress was applied to this strain by inhibiting function of the proteasome with MG132 (N-benzoylcarbonyl(Cbz)-Leu-Leu-leucinal). The effect of MG132 was found to be specific to the proteasome-associated genes. There are no earlier reports on the effect of proteasome inhibition on protein quality control in filamentous fungi. Confocal fluorescence microscopy studies suggested that the mutant CBHI accumulated in the ER and colocalized with the fungal proteasome. These results provide an indication that there is a limit to how far T. reesei Rut-C30, already under secretion stress, can be pressed to produce higher protein yields.
Resumo:
This paper explores the challenges of writing and publishing faced by Indigenous women who work in the Australian higher education sector. It demonstrates that Indigenous women are under-represented in the academy and argues that Indigenous styles of writing are typically not valued for broader publication. The authors describe a writing mentoring and support program specifically developed for Indigenous academic women in Australia. The Tiddas Writin’ Up Workshop provided a safe and culturally-appropriate space for women to learn about academic writing and develop their writing skills. The workshop led to the publication of a special issue of the Journal of Australian Indigenous Issues – known as the Tiddas Collection. The authors highlight the power and strength of well-developed support programs to address skills development, confidence, inequities and under-representation of Indigenous women within the higher education workforce.
Resumo:
It has been 21 years since the decision in Rogers v Whitaker and the legal principles concerning informed consent and liability for negligence are still strongly grounded in this landmark High Court decision. This paper considers more recent developments in the law concerning the failure to disclose inherent risks in medical procedures, focusing on the decision in Wallace v Kam [2013] HCA 19. In this case, the appellant underwent a surgical procedure that carried a number of risks. The surgery itself was not performed in a sub-standard way, but the surgeon failed to disclose two risks to the patient, a failure that constituted a breach of the surgeon’s duty of care in negligence. One of the undisclosed risks was considered to be less serious than the other, and this lesser risk eventuated causing injury to the appellant. The more serious risk did not eventuate, but the appellant argued that if the more serious risk had been disclosed, he would have avoided his injuries completely because he would have refused to undergo the procedure. Liability was disputed by the surgeon, with particular reference to causation principles. The High Court of Australia held that the appellant should not be compensated for harm that resulted from a risk he would have been willing to run. We examine the policy reasons underpinning the law of negligence in this specific context and consider some of the issues raised by this unusual case. We question whether some of the judicial reasoning adopted in this case, represents a significant shift in traditional causation principles.
Resumo:
Both the integrin and insulin-like growth factor binding protein (IGFBP) families independently play important roles in modulating tumor cell growth and progression. We present evidence for a specific cell surface localization and a bimolecular interaction between the αvβ3 integrin and IGFBP-2. The interaction, which could be specifically perturbed using vitronectin and αvβ3 blocking antibodies, was shown to modulate IGF-mediated cellular migration responses. Moreover, this interaction was observed in vivo and correlated with reduced tumor size of the human breast cancer cells, MCF-7β3, which overexpressed the αvβ3 integrin. Collectively, these results indicate that αvβ3 and IGFBP-2 act cooperatively in a negative regulatory manner to reduce tumor growth and the migratory potential of breast cancer cells.
Resumo:
Type I collagen (Col I)-stimulated matrix metalloproteinase-2 (MMP-2) activation via membrane type 1 MMP (MT1-MMP) involves both a transcriptional increase in MT1-MMP expression and a nontranscriptional response mediated by preexisting MT1-MMP. In order to identify which MT1-MMP domains were required for the nontranscriptional response, MCF-7 cells that lack endogenous MT1-MMP were transfected with either wild type or domain mutant MT1-MMP constructs. We observed that mutant constructs lacking the MT1-MMP cytoplasmic tail were able to activate MMP-2 in response to Col I but not a construct lacking the MT1-MMP hemopexin domain. Col I did not alter total MT1-MMP protein levels; nor did it appear to directly induce MT1-MMP oligomerization. Col I did, however, redistribute preexisting MT1-MMP to the cell periphery compared with unstimulated cells that displayed amore diffuse staining pattern. In addition, Col I blocked the internalization of MT1-MMP in a dynamin-dependent manner via clathrin-coated pit-mediated endocytosis. This mechanism of impaired internalization is different from that reported for concanavalin A, since it is not mediated by the cytoplasmic tail of MT1-MMP but rather by the hemopexin domain. In summary, upon Col I binding to its cell surface receptor, MT1-MMP internalization via clathrin-coated pit-mediated endocytosis is impaired through interactions with the hemopexin domain, thereby regulating its function and ability to activate MMP-2.
Resumo:
We have previously demonstrated that fibroblasts and invasive human breast carcinoma (HBC) cells specifically activate matrix metalloproteinase- 2 (MMP-2) when cultured on 3-dimensional gels of type I collagen but not a range of other substrates. We show here the constitutive expression of membrane-type 1 (MT1)-MMP in both fibroblasts, and invasive HBC cell lines, that have fibroblastic attributes presumably acquired through an epithelial- to-mesenchymal transition (EMT). Treatment with collagen type I increased the steady-state MT1-MMP mRNA levels in these cells but did not induce either MT1-MMP expression or MMP-2 activation in noninvasive breast carcinoma cell lines, which retain epithelial features. Basal MT3-MMP mRNA expression had a pattern similar to that of MT1-MMP but was not up-regulated by collagen. MT4- MMP mRNA was seen in both invasive and noninvasive HBC cell lines and was also not collagen-regulated, and MT2-MMP mRNA was not detected in any of the HBC cell lines tested. These data support a role for MT1-MMP in the collagen- induced MMP-2-activation seen in these cells. In situ hybridization analysis of archival breast cancer specimens revealed a close parallel in expression of both collagen type I and MT1-MMP mRNA in peritumoral fibroblasts, which was correlated with aggressiveness of the lesion. Relatively high levels of expression of both mRNA species were seen in fibroblasts close to invasive tumor nests and, although only focally, in certain areas close to preinvasive tumors. These foci may represent hot spots for local degradation and invasive progression. Collectively, these results implicate MT1-MMP in collagen- stimulated MMP-2 activation and suggest that this mechanism may be employed in vivo by both tumor-associated fibroblasts and EMT-derived carcinoma cells to facilitate increased invasion and/or metastasis.
Resumo:
The influence of αVβ3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing β3 integrin status. Overexpression of β3 integrin caused increased cell surface expression of αV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. β3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, αVβ3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of β3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with β3 integrin expression. Although our studies confirm important biological effects of αVβ3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, β3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by αVβ3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.
Resumo:
The paper provides a systematic approach to designing the laboratory phase of a multiphase experiment, taking into account previous phases. General principles are outlined for experiments in which orthogonal designs can be employed. Multiphase experiments occur widely, although their multiphase nature is often not recognized. The need to randomize the material produced from the first phase in the laboratory phase is emphasized. Factor-allocation diagrams are used to depict the randomizations in a design and the use of skeleton analysis-of-variance (ANOVA) tables to evaluate their properties discussed. The methods are illustrated using a scenario and a case study. A basis for categorizing designs is suggested. This article has supplementary material online.
Resumo:
Data associated with germplasm collections are typically large and multivariate with a considerable number of descriptors measured on each of many accessions. Pattern analysis methods of clustering and ordination have been identified as techniques for statistically evaluating the available diversity in germplasm data. While used in many studies, the approaches have not dealt explicitly with the computational consequences of large data sets (i.e. greater than 5000 accessions). To consider the application of these techniques to germplasm evaluation data, 11328 accessions of groundnut (Arachis hypogaea L) from the International Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India were examined. Data for nine quantitative descriptors measured in the rainy and post-rainy growing seasons were used. The ordination technique of principal component analysis was used to reduce the dimensionality of the germplasm data. The identification of phenotypically similar groups of accessions within large scale data via the computationally intensive hierarchical clustering techniques was not feasible and non-hierarchical techniques had to be used. Finite mixture models that maximise the likelihood of an accession belonging to a cluster were used to cluster the accessions in this collection. The patterns of response for the different growing seasons were found to be highly correlated. However, in relating the results to passport and other characterisation and evaluation descriptors, the observed patterns did not appear to be related to taxonomy or any other well known characteristics of groundnut.
Resumo:
The results of multi-scale numerical simulations of pulsed i-PVD template-assisted nanofabrication of ZnO nanodot arrays on a silicon substrate are presented. The ratios and spatial distributions of the ion fluxes deposited on the lateral and bottom surfaces of the nanopores are computed as a function of the external bias and plasma parameters. The results show that the pulsed bias plays a significant role in the ion current distribution inside the nanopores. The results of numerical experiments of this work suggest that by finely adjusting the pulse voltage, the pulse duration and the duty cycle of the external pulsed bias, the nanopore clogging can be successfully avoided during the deposition and the shapes of the deposited ZnO nanodots can be effectively controlled. A figure is presented.
Resumo:
The results of numerical simulation of plasma-based, porous, template-assisted nanofabrication of Au nanodot arrays on highly-doped silicon taking into account typical electron density of low-temperature plasma of 1017-1018 m-3 and electron temperature of 2-5 eV are reported here. Three-dimensional microscopic topography of ion flux distribution over the outer and inner surfaces of the nanoporous template is obtained via numerical simulation of Au ion trajectories in the plasma sheath, in the close proximity of, and inside the nanopores. It is shown that, by manipulating the electron temperature, the cross-sheath potential drop, and by additionally altering the structure of the nanoporous template, one can control the ion fluxes within the nanopores, and eventually maximize the ion deposition onto the top surface of the developing crystalline Au nanodots (see top panel in the figure). In the same time, this procedure allows one to minimize amorphous deposits on the sidewalls that clutter and may eventually close the nanopores, thus disrupting the nanodot growth process, as it is shown in the bottom panel in the figure on the right.
Resumo:
This paper conceptualizes a framework for bridging the BIM-Specifications divide by embedding project-specific information in BIM objects by means of a product library. We demonstrate how model information, enriched with data at various levels of development (LODs), can evolve simultaneously with design and construction using a window object embedded in a wall as life-cycle phase exemplars at different levels of granularity. The conceptual approach is informed by the need for exploring an approach that takes cognizance of the limitations of current modelling tools in enhancing the information content of BIM models. Therefore, this work attempts to answer the question, “How can the modelling of building information be enhanced throughout the life-cycle phases of buildings utilizing building specification information?”
Resumo:
Social Networks (SN) users have various privacy requirements to protect their information; to address this issue, a six-stage thematic analysis of scholarly articles related to SN user privacy concerns were synthesized. Then this research combines mixed methods research employing the strengths of quantitative and qualitative research to investigate general SN users, and thus construct a new set of ?ve primary and Twenty-?ve secondary SN user privacy requirements. Such an approach has been rarely used to examine the privacy requirements. Factor analysis results show superior agreement with theoretical predictions and signi?cant improvement over previous alternative models of SN user privacy requirements. This research presented here has the potential to provide for the development of more sophisticated privacy controls which will increase the ability of SN users to: specify their rights in SNs and to determine the protection of their own SN data.
Resumo:
The generation of a correlation matrix for set of genomic sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. Each sequence may be millions of bases long and there may be thousands of such sequences which we wish to compare, so not all sequences may fit into main memory at the same time. Each sequence needs to be compared with every other sequence, so we will generally need to page some sequences in and out more than once. In order to minimize execution time we need to minimize this I/O. This paper develops an approach for faster and scalable computing of large-size correlation matrices through the maximal exploitation of available memory and reducing the number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different bioinformatics problems with different correlation matrix sizes. The significant performance improvement of the approach over previous work is demonstrated through benchmark examples.
Resumo:
The ligands G1- and G2-oligo (benzyl ether) (PBE) dendrons and their iron(II) complexes [Fe(Gn-PBE)3]A2·xH2O (with n = 1, 2 and A = triflate, tosylate) were prepared. The magnetic properties of the complexes were investigated by a SQUID magnetometer. All complexes exhibit gradual spin transition below room temperature. At very low temperatures the magnetic behaviour reflects zero-field splitting (ZFS) effects. 57Fe-Mössbauer spectroscopy was performed to distinguish between ZFS of high spin species and spin state conversion into the low spin state. Further characterisation was carried out by thermogravimetric analysis (TGA) and FT-IR spectroscopy. Structural features have been determined by powder XRD measurements.