969 resultados para Esters.
Resumo:
Vitamin A (VA) deficiency and Tamm-Horsfall glycoprotein (THP), a protein that binds retinol and retinyl esters in canine urine, might be involved in the pathogenesis of urolithiasis in dogs. In the present study, we assessed levels of retinol, retinyl esters, retinol-binding protein (RBP) and THP in plasma and urine of dogs with a history of urolithiasis (n = 25) compared with clinically healthy controls (n = 18). Plasma retinol concentrations were higher in dogs with uroliths of struvit (P < 0.01), calcium oxalate (P < 0.05), urate (P < 0.01) and cysteine, but there were no differences in the concentrations of plasma RBP and retinyl esters. Excretion of urinary retinol and retinyl esters were tentatively, but not significantly higher in the stone-forming groups, which was accompanied by increased levels of urinary RBP (P < 0.01) and lower excretions in THP (P < 0.01). The results show that VA deficiency may be excluded as a potential cause for canine urolithiasis. However, the occurrence of RBP and a concomitant reduction of THP in urine indicates a disturbed kidney function as cause or consequence of stone formation in dogs.
Resumo:
The forensic utility of fatty acid ethyl esters (FAEEs) in dried blood spots (DBS) as short-term confirmatory markers for ethanol intake was examined. An LC-MS/MS method for the determination of FAEEs in DBS was developed and validated to investigate FAEE formation and elimination in a drinking study, whereby eight subjects ingested 0.66-0.84 g/kg alcohol to reach blood alcohol concentrations (BAC) of 0.8 g/kg. Blood was taken every 1.5-2 h, BAC was determined, and dried blood spots were prepared, with 50 μL of blood, for the determination of FAEEs. Lower limits of quantitation (LLOQ) were between 15 and 37 ng/mL for the four major FAEEs. Validation data are presented in detail. In the drinking study, ethyl palmitate and ethyl oleate proved to be the two most suitable markers for FAEE determination. Maximum FAEE concentrations were reached in samples taken 2 or 4 h after the start of drinking. The following mean peak concentrations (c̅ max) were reached: ethyl myristate 14 ± 4 ng/mL, ethyl palmitate 144 ± 35 ng/mL, ethyl oleate 125 ± 55 ng/mL, ethyl stearate 71 ± 21 ng/mL, total FAEEs 344 ± 91 ng/mL. Detectability of FAEEs was found to be on the same time scale as BAC. In liquid blood samples containing ethanol, FAEE concentrations increase post-sampling. This study shows that the use of DBS fixation prevents additional FAEE formation in blood samples containing ethanol. Positive FAEE results obtained by DBS analysis can be used as evidence for the presence of ethanol in the original blood sample. Graphical Abstract Time courses for fatty acid ethyl ester (FAEE) concentrations in DBS and ethanol concentrations for subject 1 over a period of 7 h. Ethanol ingestion occured during the first hour of the time course.
Resumo:
Biodiesel density is a key parameter in biodiesel simulations and process development. In this work we selected, evaluated and improved two density models, one theoretical (Rackett-Soave) and one empirical (Lapuerta's method) for methanol based biodiesels (FAME) and ethanol based biodiesel (FAEE). For this purpose, biodiesel was produced from vegetable oils (sunflower, rapeseed, soybean, olive, safflower and other two commercial mixtures of vegetable oils) and animal fats (edible and crude pork fat and beef tallow) using both methanol and ethanol for the transesterification reactions, and blended to get 21 FAME and 21 FAEE, reporting their density and detailed composition. Bibliographic data have also been used. The Rackett-Soave method has been improved by the use of a new acentric factor correlation, whereas the parameters of the empirical one are improved by considering a bigger density data bank. Results show that the evaluated models could be used to estimate the biodiesel density with a good grade of accuracy but the performed modifications improve the accuracy of the models: ARD (%) for FAME; 0.33, and FAEE; 0.26, both calculated with the modification of Rackett-Soave method and ARD (%) for FAME; 0.40 calculated with the modification of the Lapuerta's method).
Resumo:
Three different oils: babassu, coconut and palm kernel have been transesterified with methanol. The fatty acid methyl esters (FAME) have been subjected to vacuum fractional distillation, and the low boiling point fractions have been blended with fossil kerosene at three different proportions: 5, 10 and 20% vol.
Resumo:
State of the Art. Process and Distillation. Fuel Characterization. Fuel Compatibility Tests
Resumo:
The African dwarf crocodile, Osteolaemus tetraspis (Crocodilidae, Reptilia), possesses a pair of skin glands, the paracloacal glands, the secretion of which is thought to be used to mark nest sites or attract mates. Ten aromatic steroidal esters were isolated from this secretion and characterized on the basis of NMR spectroscopic investigations, electrospray ionization-MS analyses, and chemical degradation. These esters, which account for more than 90% of the paracloacal glandular secretion, are derived from either cholesterol or cholestanol, esterified with a C-20 or C-22 acid closely related to dianeackerone, the only significant volatile compound found in this secretion.
Resumo:
The fragrance of Clarkia breweri (Onagraceae), a California annual plant, includes three benzenoid esters: benzylacetate, benzylbenzoate, and methylsalicylate. Here we report that petal tissue was responsible for the benzylacetate and methylsalicylate emission, whereas the pistil was the main source of benzylbenzoate. The activities of two novel enzymes, acetyl-coenzyme A:benzylalcohol acetyltransferase (BEAT), which catalyzes the acetyl esterification of benzylalcohol, and S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase, which catalyzes the methyl esterification of salicylic acid, were also highest in petal tissue and absent in leaves. In addition, the activity of both enzymes in the various floral organs was developmentally and differentially regulated. S-Adenosyl-l-methionine:salicylic acid carboxyl methyltransferase activity in petals peaked in mature buds and declined during the next few days after anthesis, and it showed a strong, positive correlation with the emission of methylsalicylate. The levels of BEAT activity and benzylacetate emission in petals also increased in parallel as the buds matured and the flowers opened, but as emission began to decline on the 2nd d after anthesis, BEAT activity continued to increase and remained high until the end of the lifespan of the flower.
Resumo:
The reaction of the old yellow enzyme and reduced flavins with organic nitrate esters has been studied. Reduced flavins have been found to react readily with glycerin trinitrate (GTN ) (nitroglycerin) and propylene dinitrate, with rate constants at pH 7.0, 25°C of 145 M−1s−1 and 5.8 M−1s−1, respectively. With GTN, the secondary nitrate was removed reductively 6 times faster than the primary nitrate, with liberation of nitrite. With propylene dinitrate, on the other hand, the primary nitrate residue was 3 times more reactive than the secondary residue. In the old yellow enzyme-catalyzed NADPH-dependent reduction of GTN and propylene dinitrate, ping-pong kinetics are displayed, as found for all other substrates of the enzyme. Rapid-reaction studies of mixing reduced enzyme with the nitrate esters show that a reduced enzyme–substrate complex is formed before oxidation of the reduced flavin. The rate constants for these reactions and the apparent Kd values of the enzyme–substrate complexes have been determined and reveal that the rate-limiting step in catalysis is reduction of the enzyme by NADPH. Analysis of the products reveal that with the enzyme-catalyzed reactions, reduction of the primary nitrate in both GTN and propylene dinitrate is favored by comparison with the free-flavin reactions. This preferential positional reactivity can be rationalized by modeling of the substrates into the known crystal structure of the enzyme. In contrast to the facile reaction of free reduced flavins with GTN, reduced 5-deazaflavins have been found to react some 4–5 orders of magnitude slower. This finding implies that the chemical mechanism of the reaction is one involving radical transfers.
Resumo:
(Sa)-Binam-D-prolinamide (20 mol%), instead of (Sa)-binam-L-prolinamide, in combination with chloroacetic acid (100 mol%) is an efficient organocatalyst for the direct aldol reaction between α-keto esters as electrophiles and alkyl and α-functionalised ketones, under quasi solvent-free conditions, providing access to highly functionalised chiral quaternary γ-keto α-hydroxyesters with up to 92% ee.
Resumo:
The synthesis of unnatural pyrrolizidines has been studied using a multicomponent-domino process involving proline or 4-hydroxyproline esters, an aldehyde and a dipolarophile. The formation of the iminium salt promotes the 1,3-dipolar cycloaddition affording highly substituted pyrrolizidines under mild conditions and high regio- and diastereoselectivities.
Resumo:
Dimeric anthracenyldimethyl-derived Cinchona ammonium salts are used as chiral organocatalysts in 5 mol% for the phase-transfer enantioselective alkylation reaction of 2-alkoxycarbonyl-1-indanones with activated bromides. The corresponding adducts bearing a new all-carbon quaternary center are obtained usually in high yield and with moderate and opposite enantioselectivity (up to 55%) when using ammonium salts derived from quinidine and its pseudoenantiomer quinine as organocatalysts. These catalysts can be almost quantitatively recovered by precipitation in ether and reused.
Resumo:
N-Alkyl-α-amino esters undergo a domino reaction, based on the iminium cation generation, with paraformaldehyde, followed by a 1,3-dipolar cycloaddition of the stabilized azomethine ylide with another equivalent of formaldehyde. The resulting products are oxazolidines, which can be transformed after hydrolysis into α-hydroxymethyl α-amino acid or its derivatives. The diastereoselective 1,3-dipolar cycloaddition was performed using sarcosine (–)-menthyl or (–)-8-phenylmenthyl esters affording the cyclic product with moderate enantiomeric ratio.