904 resultados para Electricity -- Prices -- Mathematical models.
Resumo:
Price forecast is a matter of concern for all participants in electricity markets, from suppliers to consumers through policy makers, which are interested in the accurate forecast of day-ahead electricity prices either for better decisions making or for an improved evaluation of the effectiveness of market rules and structure. This paper describes a methodology to forecast market prices in an electricity market using an ARIMA model applied to the conjectural variations of the firms acting in an electricity market. This methodology is applied to the Iberian electricity market to forecast market prices in the 24 hours of a working day. The methodology was then compared with two other methodologies, one called naive and the other a direct forecast of market prices using also an ARIMA model. Results show that the conjectural variations price forecast performs better than the naive and that it performs slightly better than the direct price forecast.
Resumo:
In this paper we study a delay mathematical model for the dynamics of HIV in HIV-specific CD4 + T helper cells. We modify the model presented by Roy and Wodarz in 2012, where the HIV dynamics is studied, considering a single CD4 + T cell population. Non-specific helper cells are included as alternative target cell population, to account for macrophages and dendritic cells. In this paper, we include two types of delay: (1) a latent period between the time target cells are contacted by the virus particles and the time the virions enter the cells and; (2) virus production period for new virions to be produced within and released from the infected cells. We compute the reproduction number of the model, R0, and the local stability of the disease free equilibrium and of the endemic equilibrium. We find that for values of R0<1, the model approaches asymptotically the disease free equilibrium. For values of R0>1, the model approximates asymptotically the endemic equilibrium. We observe numerically the phenomenon of backward bifurcation for values of R0⪅1. This statement will be proved in future work. We also vary the values of the latent period and the production period of infected cells and free virus. We conclude that increasing these values translates in a decrease of the reproduction number. Thus, a good strategy to control the HIV virus should focus on drugs to prolong the latent period and/or slow down the virus production. These results suggest that the model is mathematically and epidemiologically well-posed.
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
Em Angola, apenas cerca de 30% da população tem acesso à energia elétrica, nível que decresce para valores inferiores a 10% em zonas rurais mais remotas. Este problema é agravado pelo facto de, na maioria dos casos, as infraestruturas existentes se encontrarem danificadas ou não acompanharem o desenvolvimento da região. Em particular na capital angolana, Luanda que, sendo a menor província de Angola, é a que regista atualmente a maior densidade populacional. Com uma população de cerca de 5 milhões de habitantes, não só há frequentemente problemas relacionados com a falha do fornecimento de energia elétrica como há ainda uma percentagem considerável de municípios onde a rede elétrica ainda nem sequer chegou. O governo de Angola, no seu esforço de crescimento e aproveitamento das suas enormes potencialidades, definiu o setor energético como um dos fatores críticos para o desenvolvimento sustentável do país, tendo assumido que este é um dos eixos prioritários até 2016. Existem objetivos claros quanto à reabilitação e expansão das infraestruturas do setor elétrico, aumentando a capacidade instalada do país e criando uma rede nacional adequada, com o intuito não só de melhorar a qualidade e fiabilidade da rede já existente como de a aumentar. Este trabalho de dissertação consistiu no levantamento de dados reais relativamente à rede de distribuição de energia elétrica de Luanda, na análise e planeamento do que é mais premente fazer relativamente à sua expansão, na escolha dos locais onde é viável localizar novas subestações, na modelação adequada do problema real e na proposta de uma solução ótima para a expansão da rede existente. Depois de analisados diferentes modelos matemáticos aplicados ao problema de expansão de redes de distribuição de energia elétrica encontrados na literatura, optou-se por um modelo de programação linear inteira mista (PLIM) que se mostrou adequado. Desenvolvido o modelo do problema, o mesmo foi resolvido por recurso a software de otimização Analytic Solver e CPLEX. Como forma de validação dos resultados obtidos, foi implementada a solução de rede no simulador PowerWorld 8.0 OPF, software este que permite a simulação da operação do sistema de trânsito de potências.
Resumo:
The European Union Emissions Trading Scheme (EU ETS) is a cornerstone of the European Union's policy to combat climate change and its key tool for reducing industrial greenhouse gas emissions cost-effectively. The purpose of the present work is to evaluate the influence of CO2 opportunity cost on the Spanish wholesale electricity price. Our sample includes all Phase II of the EU ETS and the first year of Phase III implementation, from January 2008 to December 2013. A vector error correction model (VECM) is applied to estimate not only long-run equilibrium relations, but also short-run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The four commodities prices are modeled as joint endogenous variables with air temperature and renewable energy as exogenous variables. We found a long-run relationship (cointegration) between electricity price, carbon price, and fuel prices. By estimating the dynamic pass-through of carbon price into electricity price for different periods of our sample, it is possible to observe the weakening of the link between carbon and electricity prices as a result from the collapse on CO2 prices, therefore compromising the efficacy of the system to reach proposed environmental goals. This conclusion is in line with the need to shape new policies within the framework of the EU ETS that prevent excessive low prices for carbon over extended periods of time.
Resumo:
Seit Etablierung der ersten Börsen als Marktplatz für fungible Güter sind Marktteilnehmer und die Wissenschaft bemüht, Erklärungen für das Zustandekommen von Marktpreisen zu finden. Im Laufe der Zeit wurden diverse Modelle entwickelt. Allen voran ist das neoklassische Capital Asset Pricing Modell (CAPM) zu nennen. Die Neoklassik sieht den Akteur an den Finanzmärkten als emotionslosen und streng rationalen Entscheider, dem sog. homo oeconomicus. Psychologische Einflussfaktoren bei der Preisbildung bleiben unbeachtet. Mit der Behavioral Finance hat sich ein neuer Zweig zur Erklärung von Börsenkursen und deren Bewegungen entwickelt. Die Behavioral Finance sprengt die enge Sichtweise der Neoklassik und geht davon aus, dass psychologische Effekte die Entscheidung der Finanzakteure beeinflussen und dabei zu teilweise irrational und emotional geprägten Kursänderungen führen. Eines der Hauptprobleme der Behavioral Finance liegt allerdings in der fehlenden formellen Ermittelbarkeit und Testbarkeit der einzelnen psychologischen Effekte. Anders als beim CAPM, wo die einzelnen Parameter klar mathematisch bestimmbar sind, besteht die Behavioral Finance im Wesentlichen aus psychologischen Definitionen von kursbeeinflussenden Effekten. Die genaue Wirkrichtung und Intensität der Effekte kann, mangels geeigneter Modelle, nicht ermittelt werden. Ziel der Arbeit ist es, eine Abwandlung des CAPM zu ermitteln, die es ermöglicht, neoklassische Annahmen durch die Erkenntnisse des Behavioral Finance zu ergänzen. Mittels der technischen Analyse von Marktpreisen wird versucht die Effekte der Behavioral Finance formell darstellbar und berechenbar zu machen. Von Praktikern wird die technische Analyse dazu verwendet, aus Kursverläufen die Stimmungen und Intentionen der Marktteilnehmer abzuleiten. Eine wissenschaftliche Fundierung ist bislang unterblieben. Ausgehend von den Erkenntnissen der Behavioral Finance und der technischen Analyse wird das klassische CAPM um psychologische Faktoren ergänzt, indem ein Multi-Beta-CAPM (Behavioral-Finance-CAPM) definiert wird, in das psychologisch fundierte Parameter der technischen Analyse einfließen. In Anlehnung an den CAPM-Test von FAMA und FRENCH (1992) werden das klassische CAPM und das Behavioral-Finance-CAPM getestet und der psychologische Erklärungsgehalt der technischen Analyse untersucht. Im Untersuchungszeitraum kann dem Behavioral-Finance-CAPM ein deutlich höherer Erklärungsgehalt gegenüber dem klassischen CAPM zugesprochen werden.
Resumo:
El presente proyecto, se planteó una necesidad clara por satisfacer. Las organizaciones hoy en día, necesitan nuevas herramientas que permitan predecir y minimizar riesgos de mercado, con el fin de mejorar su desempeño, su competitividad, su salud financiera y sobre todo, ser más perdurables en ambientes caóticos e inestables. Se planteó un objetivo claro a cumplir, cómo pueden las empresas mejorar su relación con los consumidores y sus comunidades, con el fin de, identificar factores que impacten positivamente la salud financiera de las organizaciones. Es pertinente, el estudio de la salud financiera en empresas de mercados emergentes y los impactos en la implementación de diferentes estrategias comunitarias para establecer métodos que minimicen los riesgos y mejoren el desempeño empresarial. Para cumplir la propuesta planteada, fue necesario abarcar diferentes fuentes de información relacionadas a temas financieros y de mercadeo. Se buscó, tomar ejemplos, teorías y modelos ya implementados en estudios similares y con objetivos en común, relacionados a: uso de indicadores financieros, valoración corporativa, valoración de los estados financieros, diagnóstico de la salud financiera, el uso de estrategias de mercadeo relacional, la fidelización de clientes y el uso de estrategias comunitarias. Además, fue necesaria la búsqueda de empresas en los mercados emergentes de Brasil y Colombia, que representan el tipo de muestra deseada para desarrollar el estudio y sus objetivos. A dicha empresa, se le realizará una serie de estudios para poder satisfacer las necesidades planteadas en el presente proyecto. Por medio de dichos estudios, se pretende identificar relaciones en el uso de estrategias comunitarias y sus impactos en la salud financiera de las organizaciones. Es importante, identificar factores de riesgo y de protección para prevenir impactos negativos o potencializar aquellos que beneficien a las empresas. Con lo anterior, será posible obtener pruebas o herramientas que mejoren los procesos de toma de decisiones de alta dirección, la formulación de directrices en estrategia corporativa y definición de ventajas competitivas de la organización. Se pretende, brindar una aproximación a nuevos conocimientos y enfoques de estudios, expuestos en el proyecto, para mejorar la ciencia de la gestión, el desempeño y la perdurabilidad empresarial en mercados emergentes. El proyecto, tomó como fuente de estudio, el banco Brasileño Itau Unibanco Holding S.A. que representa de la mejor forma, el tipo de muestra necesaria para poder cumplir con los objetivos planteados. El banco, tienen presencia en la región bastante importante y sigue con metas de expansión e internacionalización. Además de eso, es considerado el banco privado más grande de Brasil, el cuarto mayor de Chile y la quinta institución financiera de Colombia. Ha sido ganador, de varios galardones y reconocimiento por sus buenas practicas, su enfoque hacia la sostenibilidad, la sociedad, el buen ambiente y los derechos. El proyecto, culminó demostrando que efectivamente el uso de estrategias comunitarias tiene un impacto importante en la imagen corporativa, la reputación y como consecuencia, en la estabilidad financiera. Se evidenció, también, el desempeño del banco Itau Unibanco Holding del año 2013, donde, se aplicaron diferentes estudios, indicadores y demás, que demostraron un buen resultado, y por ende, una fuerte posición y salud financiera. Adicionalmente, se mostraron diferentes tipos de estrategias que el banco usa hoy en día dirigidas a las comunidades, evidenciando ejemplos en Brasil y en Chile y describiendo los proyectos, los programas o las estrategias que el banco usa para aportar a la comunidad, ser parte de la sociedad, mejorar su imagen, aumentar su reputación, profundizar en la caracterización de las necesidades de sus consumidores y revertir todo lo anterior en mejores soluciones, mejores productos y mejores formas de relacionamiento. Dicha integración en el ambiente y en el entorno de sus consumidores impacta de buena manera los resultados financieros y permite que la posición en el mercado se mantenga fuerte y firme.
Resumo:
Esta investigación tiene como objetivo general el análisis del impacto de la venta de acciones sobre la salud financiera y el riesgo en el grupo Aval. La necesidad por este estudio nace del interés por conocer los costos y beneficios que tienen las empresas a la hora de emitir acciones, siendo ésta última una práctica común en las últimas décadas. Algunas de las motivaciones relevantes para emitir acciones, son la financiación de nuevos proyectos de la empresa, el status que le pueda dar a la misma, una manera de hacer frente a la deuda, etc. Es importante conocer las implicaciones que tienen sobre la empresa la venta de acciones en términos de sus resultados, el impacto sobre los accionistas y sobre la misma sociedad. Esta investigación busca responder a la pregunta: ¿Cuál es el impacto de la venta de acciones sobre la salud financiera y el riesgo en los grupos financieros? Nos interesaremos por la revisión bibliográfica acerca de la salud financiera abordando autores que hablan de la misma desde el punto de vista de la posición de la empresa, refiriéndonos siempre a tres indicadores relevantes para el estudio y que son utilizados en la literatura para medir la salud financiera: liquidez, rentabilidad y endeudamiento. En la revisión de la literatura se ha encontrado una relación entre la salud financiera y el riesgo, por lo tanto buscaremos identificar cuál es el riesgo que afecta a las empresas cuando se emiten acciones centrándonos en tres tipos de riesgos financieros: riesgo de mercado, de interés y riesgo operacional; se ha escogido el grupo Aval para éste estudio ya que es uno de los grupos financieros más importantes en Colombia, con varios años de gestión y que actualmente realiza la práctica de emitir acciones.
Resumo:
The energy and hardness profile for a series of inter and intramolecular conformational changes at several levels of calculation were computed. The hardness profiles were found to be calculated as the difference between the vertical ionization potential and electron affinity. The hardness profile shows the correct number of stationary points independently of the basis set and methodology used. It was found that the hardness profiles can be used to check the reliability of the energy profiles for those chemical system
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.
Resumo:
We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller-Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated.
Resumo:
Mathematical models devoted to different aspects of building studies and brought about a significant shift in the way we view buildings. From this background a new definition of building has emerged known as intelligent building that requires integration of a variety of computer-based complex systems. Research relevant to intelligent continues to grow at a much faster pace. This paper is a review of different mathematical models described in literature, which make use of different mathematical methodologies, and are intended for intelligent building studies without complex mathematical details. Models are discussed under a wide classification. Mathematical abstract level of the applied models is detailed and integrated with its literature. The goal of this paper is to present a comprehensive account of the achievements and status of mathematical models in intelligent building research. and to suggest future directions in models.
Resumo:
The mathematical models that describe the immersion-frying period and the post-frying cooling period of an infinite slab or an infinite cylinder were solved and tested. Results were successfully compared with those found in the literature or obtained experimentally, and were discussed in terms of the hypotheses and simplifications made. The models were used as the basis of a sensitivity analysis. Simulations showed that a decrease in slab thickness and core heat capacity resulted in faster crust development. On the other hand, an increase in oil temperature and boiling heat transfer coefficient between the oil and the surface of the food accelerated crust formation. The model for oil absorption during cooling was analysed using the tested post-frying cooling equation to determine the moment in which a positive pressure driving force, allowing oil suction within the pore, originated. It was found that as crust layer thickness, pore radius and ambient temperature decreased so did the time needed to start the absorption. On the other hand, as the effective convective heat transfer coefficient between the air and the surface of the slab increased the required cooling time decreased. In addition, it was found that the time needed to allow oil absorption during cooling was extremely sensitive to pore radius, indicating the importance of an accurate pore size determination in future studies.
Resumo:
We review and structure some of the mathematical and statistical models that have been developed over the past half century to grapple with theoretical and experimental questions about the stochastic development of aging over the life course. We suggest that the mathematical models are in large part addressing the problem of partitioning the randomness in aging: How does aging vary between individuals, and within an individual over the lifecourse? How much of the variation is inherently related to some qualities of the individual, and how much is entirely random? How much of the randomness is cumulative, and how much is merely short-term flutter? We propose that recent lines of statistical inquiry in survival analysis could usefully grapple with these questions, all the more so if they were more explicitly linked to the relevant mathematical and biological models of aging. To this end, we describe points of contact among the various lines of mathematical and statistical research. We suggest some directions for future work, including the exploration of information-theoretic measures for evaluating components of stochastic models as the basis for analyzing experiments and anchoring theoretical discussions of aging.
Resumo:
In order to increase overall transparency on key operational information, power transmission system operators publish an increasing amount of fundamental data, including forecasts of electricity demand and available capacity. We employ a fundamental model for electricity prices which lends itself well to integrating such forecasts, while retaining ease of implementation and tractability to allow for analytic derivatives pricing formulae. In an extensive futures pricing study, the pricing performance of our model is shown to further improve based on the inclusion of electricity demand and capacity forecasts, thus confirming the general importance of forward-looking information for electricity derivatives pricing. However, we also find that the usefulness of integrating forecast data into the pricing approach is primarily limited to those periods during which electricity prices are highly sensitive to demand or available capacity, whereas the impact is less visible when fuel prices are the primary underlying driver to prices instead.