972 resultados para Duffing-Van der Pol oscillator
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H-2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H-2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
The potential energies of van der Waals (VDW) interactions between two parallel, infinitely long and perfect SWNTs with identical, and different sizes were studied based on the continuum Lennard-Jones model. The conclusion of Girifalco's work on (n, n) SWNTs that the potentials of SWNT-SWNT fell on a single curve, is also applicable to SWNTs with different sizes. We further obtained the corresponding constants of the well depth phi(0) and equilibrium VDW gap g(0) for SWNTs with a radius from 2 to 25 Angstrom. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The van der Waals (vdW) interactions between carbon nanotubes (CNTs) were studied based on the continuum Lennard-Jones model. It was found that all the vdW potentials between two arbitrary CNTs fall on the same curve when plotted in terms of certain reduced parameters, the well depth, and the equilibrium vdW gap. Based on this observation, an approximate approach is developed to obtain the vdW potential between two CNTs without time-consuming computations. The vdW potential estimated by this approach is close to that obtained from complex integrations. Therefore, the developed approach can greatly simplify the calculation of vdW interactions between CNTs.
Resumo:
Van der Waals forces often dominate interactions and adhesion between fine particles and, in turn, decisively influence the bulk behaviour of powders. However, so far there is no effective means to characterize the adhesive behaviour of such particles. A complication is that most powder particles have rough surfaces, and it is the asperities on the surfaces that touch, confounding the actual surface that is in contact. Conventional approaches using surface energy provide limited information regarding adhesion, and pull-off forces measured through atomic force microscope (AFM) are highly variable and difficult to interpret. In this paper we develop a model which combines the Rumpf-Rabinovich and the JKR-DMT theories to account simultaneously for the effects of surface roughness and deformation on adhesion. This is applied to a 'characteristic asperity' which may be easily obtained from AFM measurements. The concept of adhesiveness, a material property reflecting the influences of elastic deformability, surface roughness, and interfacial surface energy, is introduced as an efficient and quantitative measure of the adhering tendency of a powder. Furthermore, a novel concept of specific adhesiveness is proposed as a convenient tool for characterizing and benchmarking solid materials. This paper provides an example to illustrate the use of the proposed theories. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The random-phase approximation with exchange (RPAE) is used with a B-spline basis to compute dynamic dipole polarizabilities of noble-gas atoms and several other closed-shell atoms (Be, Mg, Ca, Zn, Sr, Cd, and Ba). From these, values of the van der Waals C6 constants for positronium interactions with these atoms are determined and compared with existing data. After correcting the RPAE polarizabilities to fit the most accurate static polarizability data, our best predictions of C6 for Ps–noble-gas pairs are expected to be accurate to within 1%, and to within a few percent for the alkaline-earth metals. We also used accurate dynamic dipole polarizabilities from the literature to compute the C6 coefficients for the alkali-metal atoms. Implications of increased C6 values for Ps scattering from more polarizable atoms are discussed.
Resumo:
Epitaxial van der Waals (vdW) heterostructures of organic and layered materials are demonstrated to create high-performance organic electronic devices. High-quality rubrene films with large single-crystalline domains are grown on h-BN dielectric layers via vdW epitaxy. In addition, high carrier mobility comparable to free-standing single-crystal counterparts is achieved by forming interfacial electrical contacts with graphene electrodes.
Resumo:
In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems.
Resumo:
本文提出分析一类强非线性振子的一种渐近方法,导出了用振幅和相位表示的二阶近似解,给出了振幅和相位所满足的方程,借此可以确定极限环的振幅和性态。作为实例,还研究了修正的van der Pol振子,给出了相应的极限环的二阶近似解析解,与数值解的比较表明,两者非常相符。
Resumo:
Complementa la información contenida en los documentos publicados con los símbolos LC/DEM/CR/G.7 y G.9
Resumo:
STUDY DESIGN.: Cadaver study. OBJECTIVE.: To determine bone strength in vertebrae by measuring peak breakaway torque or indentation force using custom-made pedicle probes. SUMMARY OF BACKGROUND DATA.: Screw performance in dorsal spinal instrumentation is dependent on bone quality of the vertebral body. To date no intraoperative measuring device to validate bone strength is available. Destructive testing may predict bone strength in transpedicular instrumentations in osteoporotic vertebrae. Insertional torque measurements showed varying results. METHODS.: Ten human cadaveric vertebrae were evaluated for bone mineral density (BMD) measurements by quantitative computed tomography. Peak torque and indentation force of custom-made probes as a measure for mechanical bone strength were assessed via a transpedicular approach. The results were correlated to regional BMD and to biomechanical load testing after pedicle screw implementation. RESULTS.: Both methods generated a positive correlation to failure load of the respective vertebrae. The correlation of peak breakaway torque to failure load was r = 0.959 (P = 0.003), therewith distinctly higher than the correlation of indentation force to failure load, which was r = 0.690 (P = 0.040). In predicting regional BMD, measurement of peak torque also performed better than that of indentation force (r = 0.897 [P = 0.002] vs. r = 0.777 [P = 0.017]). CONCLUSION.: Transpedicular measurement of peak breakaway torque is technically feasible and predicts reliable local bone strength and implant failure for dorsal spinal instrumentations in this experimental setting.
Resumo:
In this paper, several computational schemes are presented for the optimal tuning of the global behavior of nonlinear dynamical sys- tems. Specifically, the maximization of the size of domains of attraction associated with invariants in parametrized dynamical sys- tems is addressed. Cell Mapping (CM) tech- niques are used to estimate the size of the domains, and such size is then maximized via different optimization tools. First, a ge- netic algorithm is tested whose performance shows to be good for determining global maxima at the expense of high computa- tional cost. Secondly, an iterative scheme based on a Stochastic Approximation proce- dure (the Kiefer-Wolfowitz algorithm) is eval- uated showing acceptable performance at low cost. Finally, several schemes combining neu- ral network based estimations and optimiza- tion procedures are addressed with promising results. The performance of the methods is illus- trated with two applications: first on the well-known van der Pol equation with stan- dard parametrization, and second the tuning of a controller for saturated systems.