973 resultados para Double bond position


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two cleavage pathways of beta-carotene have been proposed, one by central cleavage and the other by random (excentric) cleavage. The central cleavage pathway involves the metabolism of beta-carotene at the central double bond (15, 15') to produce retinal by beta-carotene 15, 15'-dioxygenase (E.C.888990988). The random cleavage of beta-carotene produces beta-apo-carotenoids, but the mechanism is not clear. To understand the various mechanisms of beta-carotene cleavage, beta-carotene was incubated with the intestinal postmitochondrial fractions of 10-week-old male rats for 1 h and cleavage products of beta-carotene were analyzed using reverse-phase, high-performance liquid chromatography (HPLC). We also studied the effects of alpha-tocopherol and NAD(+)/NADH on beta-carotene cleavage. In addition to beta-carotene, we used retinal and beta-apo-14'-carotenoic acid as substrates in these incubations. Beta-apo-14'-carotenoic acid is the two-carbon longer homologue of retinoic acid. In the presence of alpha-tocopherol, beta-carotene was converted exclusively to retinal, whereas in the absence of alpha-tocopherol, both retinal and beta-apo-carotenoids were formed. Retinoic acid was produced from both retinal and beta-apo-14'-carotenoic acid incubations only in the presence of NAD(+). Our data suggest that in the presence of an antioxidant such as alpha-tocopherol, beta-carotene is converted exclusively to retinal by central cleavage. In the absence of an antioxidant, beta-carotene is cleaved randomly by enzyme-related radicals to produce beta-apo-carotenoids, and these beta-apo-carotenoids can be oxidized further to retinoic acid via retinal. (C) 2000 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ozone monitoring techniques utilize expensive instruments that are often large and heavy. These instruments are not easy to handle in the field, and their size also limits some sampling schemes, principally for indoor ozone determination. We have developed a lightweight, inexpensive, and sensitive method that offers flexibility to undertake measurements of ambient ozone in many environments, both indoor and outdoor. The method is based on the reaction of ozone with indigo blue dye. The indigo molecule contains 1 carbon double bond (C = C) that reacts with ozone and results in nearly colorless reaction products. During sample collection, 2 cellulose filters coated with 40 mu L of 1.0 x 10(-3) M indigo blue were used. The determinations were done spectrophotometrically at 250 and 600 nm. The analytical parameters studied were sampling time and flow rate. Analytical curves were constructed with concentrations ranging from 37 to 123 parts per billion by volume (ppbv) of standard ozone, at 0.4 L/min and 15 min sampling time. The detection limits achieved were 6 and 9 ppbv, respectively, at 250 and 600 nm. Considering interferences, measurements made at 250 nm gave more reliable and specific values for ozone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sesquiterpenes cadina-4,10(15)-dien-3-one (1) and aromadendr-1(10)-en-9-one (squamulosone) (14) along with the triterpenoid methyl ursolate (21) were incubated with the fungus Mucor plumbeus ATCC 4740. Substrates 1, 14 and ursolic acid (20) were isolated from the plant Hyptis verticillata in large quantities. M. plumbeus hydroxylated 1 at C-12 and C-14. When the iron content of the medium was reduced, however, hydroxylation at these positions was also accompanied by epoxidation of the exocyclic double bond. In total nine new oxygenated cadinanes have been obtained. Sesquiterpene 14 was converted to the novel 2α,13-dihydroxy derivative along with four other metabolites. Methyl ursolate (21) was transformed to a new compound, methyl 3β,7β,21β-trihydroxyursa-9(11),12-dien-28-oate (22). Two other triterpenoids, 3β,28-dihydroxyurs-12-ene (uvaol) (23) and 3β,28-bis(dimethylcarbamoxy)urs-12-ene (24) were not transformed by the micro-organism, however. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). These derivatives are highly susceptible to photooxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (∼50 nm) to allow for a more realistic comparison. Photodegradation experiments were carried out by illuminating the films with white light from a halogen lamp (50W, 12 V), placed at a fixed dstance from the sample. The decay was monitored by UV-Vis and FTIR spectroscopies. The results showed that cast films are completely degraded in ca. 300 min, while LB took longer times, ca. 1000 min, i.e. 3 times the values for the cast films. The degradation process occurs in at least two stages, the rates of which were calculated assuming that the reaction follows a first order kinetics. The characteristic times for the first stage were 3.6×10-2 and 1.3×10-3 min-1 for cast and LB films, respectively. For the second stage the characteristic times were 5.6×10-2 and 5.0×10 -3 min-1. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Casearia sylvestris Swartz (Salicaceae) is a tree or shrub distributed widely in Brazil, where it is used in popular medicine. Several bioactive clerodane diterpenes typical of Casearia have been isolated from this species (e.g. casearins and casearvestrins). The main objective of this study was to identify clerodane diterpenes in various organs of C. sylvestris, using chromatographic and spectroscopic analytical techniques. The extracts of the different plant parts were analyzed by thin layer chromatography, high performance liquid chromatography with diode array detector and 1H nuclear magnetic resonance. In the chromatographic analysis, clerodane diterpenes isolated from C. sylvestris were used as standards, including rel-19Sacetóxi-18R- butanoilóxi-18,19- epóxi -6S -hidróxi -2R-(2-metilbutanoilóxi) -5S, 8R, 9R, 10S -cleroda-3,13(16),14-triene, isolated for the first time from the stems. Phytochemical profiles of the organs were produced, which indicated the presence of clerodane diterpenes in all parts of the plant, notably in the leaves. The results also suggest that the main clerodane diterpenes in the stems, flowers and roots had conjugated double-bond patterns that differed from those found in the leaves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the chemical interaction between carbon nanotubes (MWCNT) functionalized with acyl chloride (SOCl2) and polymer chain tetrafuncional N,N,N′,N′-tetraglycidyl-4,4′- diaminodiphenylmethane (TGDDM) and hardener 4,4′diaminodiphenyl sulfone (DDS) has been monitored by Fourier transform infrared spectroscopy (FTIR) with a attenuated total reflectance (ATR) coupled. MWCNT were obtained from the pyrolysis of a mixture of camphor and ferrocene into a oven. The functionalization process was done by oxidative treatment in order to incorporate carboxylic group over the walls of MWCNT, before to be used SOCl2. The functionalized carbon nanotubes were evaluated by X-ray photoelectron spectroscopy (XPS), Raman and transmission electron microscopy (TEM). Nanostructured composites were processed by using epoxy resin with MWCNT in varying percentages. In this work it was observed that different percentages of functionalized nanotubes modify the interaction between the composite matrix and curing agent, where can be observed that in specimens with content less than 1 wt% MWCNT the chemical bond occurs preferentially from the opening of the SO double bond of the hardener and when is used MWCNT content higher than 1 wt% there is little chemical interaction with the SO bond of the hardener and most MWCNT binds to amine. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background levels of exocyclic DNA adducts have been detected in rodent and human tissues. Several studies have focused on bifunctional electrophiles generated from lipid peroxidation as one of the endogenous sources of these lesions. We have previously shown that the reaction of 2'-deoxyguanosine (dGuo) with trans,trans-2,4-decadienal (DDE), a highly cytotoxic aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of a number of different base derivatives. Three of these derivatives have been fully characterized as 1,N-2-etheno-2'-deoxyguanosine adducts. In the present work, four additional adducts, designated A3-A6, were isolated from in vitro reactions by reversed-phase HPLC and fully characterized on the basis of spectroscopic measurements. Adducts A3-A6 are four diastereoisomeric 1,N-2-hydroxyethano-2'-deoxyguanosine derivatives possessing a carbon side chain with a double bond and a hydroxyl group. The systematic name of these adducts is 6-hydroxy3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-7-((E)-1-hydroxy-oct-2-enyl)-3,5,6,7-tetrahydro-imidazo- [1,2-a]purin-9-one. The proposed reaction mechanism yielding adducts A3-A6 involves DDE epoxidation at C2, followed by nucleophilic addition of the exocyclic amino group of dGuo to the C1 of the aldehyde and cyclization, via nucleophilic attack, on the C2 epoxy group by N-1. The formation of adducts A1-A6 has been investigated in acidic, neutral, and basic pH in the presence of H2O2 or tent-butyl hydroperoxide. Neutral conditions, in the presence of H2O2, have favored the formation of adducts A1 and A2, with minor amounts of A3-A6, which were prevalent under basic conditions. These data indicate that DDE can modify DNA bases through different oxidative pathways involving its two double bonds. It is important to structurally characterize DNA base derivatives induced by alpha,beta-unsaturated aldehydes so that the genotoxic risks associated with the lipid peroxidation process can be assessed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An antioxidant structure-activity study is carried out in this work with ten flavonoid compounds using quantum chemistry calculations with the functional of density theory method. According to the geometry obtained by using the B3LYP/6-31G(d) method, the HOMO, ionization potential, stabilization energies, and spin density distribution showed that the flavonol is the more antioxidant nucleus. The spin density contribution is determinant for the stability of the free radical. The number of resonance structures is related to the pi-type electron system. 3-hydroxyflavone is the basic antioxidant structure for the simplified flavonoids studied here. The electron abstraction is more favored in the molecules where ether group and 3-hydroxyl are present, nonetheless 2,3-double bond and carbonyl moiety are facultative.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caffeic acid is an ortho-phenol found in vegetable tissues presenting important properties such as carcinogenesis inhibitor, anti-oxidant, anti-viral, anti-inflammatory and anti-rheumatic actions. It was observed that caffeic acid was not degraded in daylight during the adsorption on TiO2 at pH 4.8. The adsorption fit very well to a Brunauer-Emmett-Teller isotherm equation with a monolayer coverage of 68.15 mg(CA) g(TiO2)(-1) and saturation coverage of 195.4 mg(CA) g(TiO2)(-1). A strong adsorption of caffeic acid was verified on TiO2 for the dry solid obtained from the mixture. The Raman and IR spectroscopies revealed that the adsorption should occur through the interaction of the diphenol oxygens with contribution of CC double bond of the acrylic group, however, the carboxylic acid group did not have participation in the adsorption. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZusammenfassungDie selbstkondensierende Gruppenübertragungspolymerisation von 2-[(2-Methyl-1-triethylsiloxy-1-propenyl)oxy]ethyl-methacrylat (MTSHEMA) und die Copolymerisation mit Methylmethacrylat und tert-Butylmethacrylat wurde untersucht. Da MTSHEMA eine polymerisierbare Methacryloyl-Einheit und eine zur Initiierung einer Gruppenübertragungspolymerisation befähigte Silylketenacetal-Einheit besitzt, führt die Homopolymerisation zu hyperverzweigten und die Copolymerisation zu hochverzweigten Polymeren.Bei der Homopolymerisation von MTSHEMA konnten nur niedrige Molekulargewichte erreicht werden. Dies wird auf Nebenreaktionen der aktiven Kettenenden zurückgeführt, welche die Carbonylgruppen nucleophil angreifen und, mit der Doppelbindung Kern-Einheit reagieren. Die Copolymerisation mit Methylmethacrylat verlauft ohne Nebenreaktionen. Durch die Variation des molaren Verhältnisses von MTSHEMA zu den Comonomeren war es möglich, das Molekulargewicht, den Verzweigungsgrad und dadurch die Viskosität in Lösung zu kontrollieren. Die Bestimmung der Molekulargewichtsverteilung sämtlicher Polymere erfolgte durch Kopplung der Gelpermeationschromatographie mit einem Viskositätsdetektor und einem Vielwinkel Lichtstreu-Photometer. Die aus dem Vergleich der Viskositäten und Trägheitsradien ermittelten Schrumpfungspa-rameter lassen Schlüsse auf den Verzweigungsgrad zu.Nach den Ergebnissen der viskoelastischen Spektroskopie folgt das Verhalten der verzweigten Polymere in der Schmelze der Rouse-Theorie und deutet damit auf die Abwesenheit von Verschlaufungen hin.Durch die Copolymerisation mit tert-Butylmethacrylat und MTSHEMA konnte hochverzweigtes Poly(tert-butylmethacrylat) synthetisiert werden. Die Verseifung dieser Polymere ergab verzweigte Polymethacrylsäure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Membrane-based separation processes are acquiring, in the last years, an increasing importance because of their intrinsic energetic and environmental sustainability: some types of polymeric materials, showing adequate perm-selectivity features, appear rather suitable for these applications, because of their relatively low cost and easy processability. In this work have been studied two different types of polymeric membranes, in view of possible applications to the gas separation processes, i.e. Mixed Matrix Membranes (MMMs) and high free volume glassy polymers. Since the early 90’s, it has been understood that the performances of polymeric materials in the field of gas separations show an upper bound in terms of permeability and selectivity: in particular, an increase of permeability is often accompanied by a decrease of selectivity and vice-versa, while several inorganic materials, like zeolites or silica derivates, can overcome this limitation. As a consequence, it has been developed the idea of dispersing inorganic particles in polymeric matrices, in order to obtain membranes with improved perm-selectivity features. In particular, dispersing fumed silica nanoparticles in high free volume glassy polymers improves in all the cases gases and vapours permeability, while the selectivity may either increase or decrease, depending upon material and gas mixture: that effect is due to the capacity of nanoparticles to disrupt the local chain packing, increasing the dimensions of excess free volume elements trapped in the polymer matrix. In this work different kinds of MMMs were fabricated using amorphous Teflon® AF or PTMSP and fumed silica: in all the cases, a considerable increase of solubility, diffusivity and permeability of gases and vapours (n-alkanes, CO2, methanol) was observed, while the selectivity shows a non-monotonous trend with filler fraction. Moreover, the classical models for composites are not able to capture the increase of transport properties due to the silica addition, so it has been necessary to develop and validate an appropriate thermodynamic model that allows to predict correctly the mass transport features of MMMs. In this work, another material, called poly-trimethylsilyl-norbornene (PTMSN) was examined: it is a new generation high free volume glassy polymer that, like PTMSP, shows unusual high permeability and selectivity levels to the more condensable vapours. These two polymer differ each other because PTMSN shows a more pronounced chemical stability, due to its structure double-bond free. For this polymer, a set of Lattice Fluid parameters was estimated, making possible a comparison between experimental and theoretical solubility isotherms for hydrocarbons and alcoholic vapours: the successfully modelling task, based on application of NELF model, offers a reliable alternative to direct sorption measurement, which is extremely time-consuming due to the relevant relaxation phenomena showed by each sorption step. For this material also dilation experiments were performed, in order to quantify its dimensional stability in presence of large size, swelling vapours.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthese und Reaktivität styrylsubstituierter p-Benzochinone Oligo- und Poly(1,4-phenylenvinylene) (OPV, PPV) stellen eine für die Materialwissenschaft äußerst interessante Verbindungsklasse dar, die in Form von Halbleitern, Photoleitern, elektrolumineszierenden Systemen und negativen Photoresists breitgefächerte Anwendung findet. Allerdings stellt die Alterung dieser Materialien in Gegenwart von Sauerstoff und anderen Oxidationsmitteln ein signifikantes Problem dar. So wird z. B. die technische Anwendung von Leuchtdioden auf Polymerbasis durch ihre geringe Betriebsdauer eingeschränkt. Als Beitrag zur Untersuchung des oxidativen Abbaus von Poly- bzw. Oligo(p-phenylenvinylenen) [PPV, OPV] wurden verschiedene 2-Styryl-1,4-benzochinone - sowie höhere Oligomere - synthetisiert, die das Strukturelement einer hoch oxidierten Form von OPV's aufweisen. Durch Einführung einer Cyanogruppe an der olefinischen Doppelbindung wurde die Reaktivität der Modellsysteme gezielt beeinflußt. Die 2-Styryl-1,4-benzochinone mit unsubstituierter Doppelbindung dimerisieren in Lösung quantitativ im Sinne von Diels-Alder-Reaktionen zu den entsprechenden Cycloaddukten. Die Dimerisierungen verlaufen chemo-, regio- und stereoselektiv, was sich anhand von Grenzorbital-Betrachtungen erklären läßt.An der Oberfläche von Kieselgel erfolgt eine vollständige Umwandlung der Dimere, deren zwei Hauptprodukte identifiziert werden konnten: Neben Verbindungen, die durch eine intramolekulare [4+2]-Cycloaddition nach erfolgter Dehydrierung / Oxidation gebildet werden, entstehen verschiedene Additionsprodukte der Dimere mit Nucleophilen (Wasser, Ethanol). Cyanosubstitution führt bereits bei den als Vorstufe dienenden Stilbenen zu einer erleichterten (E/Z)-Photoisomerisierung in Lösung, die zu einem photostationären Gleichgewicht führt, welches sich durch einen hohen Anteil der (E)-Konfiguration auszeichnet. Nach erfolgter Oxidation kann ebenfalls eine Dimerisierung beobachtet werden. Bei direkter Nachbarschaft der Cyanogruppe zum Chinonring erfolgt stattdessen ein intramolekularer Ringschluß unter Ausbildung eines Benzofuranderivats.Die beobachtete Reaktivität der synthetisierten Chinonsysteme steht in Einklang mit einem möglichen sekundären Abbaumechanismus, der nach primärer Oxidation zu der Alterung von PPV's beitragen kann.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il presente lavoro di tesi è frutto di una collaborazione fra il Dipartimento di Chimica Fisica ed Inorganica (gruppo del Prof. Valerio Zanotti – Mattia Vaccari, Dr. Rita Mazzoni) ed il Dipartimento di Chimica Industriale e dei Materiali (gruppo del Prof. Angelo Vaccari – Dr. Thomas Pasini, Dr. Stefania Albonetti, Prof. Fabrizio Cavani) e si inserisce il un progetto volto a valutare l’attività e la selettività del catalizzatore di idrogenazione di Shvo 1, verso l’idrogenazione selettiva del doppio legame polare del 5-idrossimetilfurfurale (HMF) in fase omogenea. L’HMF è un composto di natura organica facilmente ottenibile dalle biomasse, il quale può essere impiegato come building block per ottenere prodotti ad alto valore aggiunto per la chimica fine o additivi per biocarburanti aventi un elevato potere calorifico. In particolare la nostra attenzione si è rivolta alla produzione del 2,5-diidrossimetilfurano (BHMF), un importante building block per la produzione di polimeri e schiume poliuretaniche. Il lavoro di tesi da me svolto ha riguardato la messa a punto di una nuova metodologia sintetica per la preparazione del catalizzatore di Shvo e lo studio della sua attività catalitica nella riduzione di HMF a BHMF. Il comportamento del catalizzatore è stato monitorato studiando la resa in BHMF in funzione di tutti i parametri di reazione: temperatura, pressione di H2, solvente, rapporto molare substrato/catalizzatore, concentrazione, tempo. Successivamente è stata valutata la possibilità di riciclare il catalizzatore recuperando il prodotto di estrazione con acqua, per precipitazione o eseguendo la reazione in miscela bifasica (toluene/H2O). The present work is a collaboration between the Department of Physics and Inorganic Chemistry (group of Prof. Valerio Zanotti - Mattia Vaccari, Dr. Rita Mazzoni) and the Department of Industrial Chemistry and Materials (Group of Prof. Angelo Vaccari - Dr. Thomas Pasini, Dr. Stefania Albonetti, Prof. Fabrizio Cavani), and it’s a project devoted to evaluate the activity and selectivity of the Shvo catalyst, in the selective hydrogenation of polar double bond of 5 -hydroxymethylfurfural (HMF) in homogeneous phase. The HMF is an organic compound easily obtained from biomass, which can be used as a building block for fine chemicals abd polymer production or additives for biofuels with a high calorific value. In particular, our attention turned to the production of 2.5-bishydroxymethylfuran (BHMF), an important building block for the production of polymers and polyurethane foams. This thesis has involved the development of a new synthetic methodology for the preparation of Shvo’s catalyst and the study of its catalytic activity in the reduction of HMF to BHMF. The behavior of the catalyst was monitored by studying the yield in BHMF as a function of all the reaction parameters: temperature, pressure of H2, solvent, substrate to catalyst molar ratio, concentration, time. Subsequently it was evaluated the possibility of recycling the catalyst recovering the product of extraction with water, by precipitation or performing the reaction in biphasic mixture (toluene/H2O).