910 resultados para Distorsioni rettificazione opencv calibrazione semplificazione riduzioni matrice adaptive rectification algoritmi fixedpoint


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive behaviour is a crucial area of assessment for individuals with Autism Spectrum Disorder (ASD). This study examined the adaptive behaviour profile of 77 young children with ASD using the Vineland-II, and analysed factors associated with adaptive functioning. Consistent with previous research with the original Vineland a distinct autism profile of Vineland-II age equivalent scores, but not standard scores, was found. Highest scores were in motor skills and lowest scores were in socialisation. The addition of the Autism Diagnostic Observation Schedule (ADOS) calibrated severity score did not contribute significant variance to Vineland-II scores beyond that accounted for by age and nonverbal ability. Limitations, future directions, and implications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innovation enables organisations to endure by responding to emergence and to improve efficiency. Innovation in a complex organisation can be difficult due to complexities contributing to slow decision-making. Complex projects fail due to an inability to respond to emergence which consumes finances and impacts on resources and organisational success. Therefore, for complex organisations to improve on performance and resilience, it would be advantageous to understand how to improve the management of innovation and thus, the ability to respond to emergence. The benefits to managers are an increase in the number of successful projects and improved productivity. This study will explore innovation management in a complex project based organisation. The contribution to the academic literature will be an in-depth, qualitative exploration of innovation in a complex project based organisation using a comparative case study approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A residual-based strategy to estimate the local truncation error in a finite volume framework for steady compressible flows is proposed. This estimator, referred to as the -parameter, is derived from the imbalance arising from the use of an exact operator on the numerical solution for conservation laws. The behaviour of the residual estimator for linear and non-linear hyperbolic problems is systematically analysed. The relationship of the residual to the global error is also studied. The -parameter is used to derive a target length scale and consequently devise a suitable criterion for refinement/derefinement. This strategy, devoid of any user-defined parameters, is validated using two standard test cases involving smooth flows. A hybrid adaptive strategy based on both the error indicators and the -parameter, for flows involving shocks is also developed. Numerical studies on several compressible flow cases show that the adaptive algorithm performs excellently well in both two and three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a Bayesian sampling algorithm called adaptive importance sampling or population Monte Carlo (PMC), whose computational workload is easily parallelizable and thus has the potential to considerably reduce the wall-clock time required for sampling, along with providing other benefits. To assess the performance of the approach for cosmological problems, we use simulated and actual data consisting of CMB anisotropies, supernovae of type Ia, and weak cosmological lensing, and provide a comparison of results to those obtained using state-of-the-art Markov chain Monte Carlo (MCMC). For both types of data sets, we find comparable parameter estimates for PMC and MCMC, with the advantage of a significantly lower wall-clock time for PMC. In the case of WMAP5 data, for example, the wall-clock time scale reduces from days for MCMC to hours using PMC on a cluster of processors. Other benefits of the PMC approach, along with potential difficulties in using the approach, are analyzed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental changes have put great pressure on biological systems leading to the rapid decline of biodiversity. To monitor this change and protect biodiversity, animal vocalizations have been widely explored by the aid of deploying acoustic sensors in the field. Consequently, large volumes of acoustic data are collected. However, traditional manual methods that require ecologists to physically visit sites to collect biodiversity data are both costly and time consuming. Therefore it is essential to develop new semi-automated and automated methods to identify species in automated audio recordings. In this study, a novel feature extraction method based on wavelet packet decomposition is proposed for frog call classification. After syllable segmentation, the advertisement call of each frog syllable is represented by a spectral peak track, from which track duration, dominant frequency and oscillation rate are calculated. Then, a k-means clustering algorithm is applied to the dominant frequency, and the centroids of clustering results are used to generate the frequency scale for wavelet packet decomposition (WPD). Next, a new feature set named adaptive frequency scaled wavelet packet decomposition sub-band cepstral coefficients is extracted by performing WPD on the windowed frog calls. Furthermore, the statistics of all feature vectors over each windowed signal are calculated for producing the final feature set. Finally, two well-known classifiers, a k-nearest neighbour classifier and a support vector machine classifier, are used for classification. In our experiments, we use two different datasets from Queensland, Australia (18 frog species from commercial recordings and field recordings of 8 frog species from James Cook University recordings). The weighted classification accuracy with our proposed method is 99.5% and 97.4% for 18 frog species and 8 frog species respectively, which outperforms all other comparable methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic studies on phylogeography and adaptive divergence in Northern Hemisphere fish species such as three-spined stickleback (Gasterosteus aculeatus) provide an excellent opportunity to investigate genetic mechanisms underlying population differentiation. According to the theory, the process of population differentiation results from a complex interplay between random and deterministic processes as well historical factors. The main scope in this thesis was to study how historical factors like the Pleistocene ice ages have shaped the patterns molecular diversity in three-spined stickleback populations in Europe and how this information could be utilized in the conservation genetic context. Furthermore, identifying footprints of natural selection at the DNA level might be used in identifying genes involved in evolutionary change. Overall, the results from phylogeographic studies indicate that the three-spined stickleback has colonized the Atlantic basin relatively recently but constitutes three major evolutionary lineages in Europe. In addition, the colonization of freshwater appears to result from multiple and independent invasions by the marine conspecifics. Molecular data together with morphology suggest that the most divergent freshwater populations are located in the Balkan Peninsula and these populations deserve a special conservation genetic status without warranting further taxonomical classification. In order to investigate the adaptive divergence in Fennoscandian three-spined stickleback populations several approaches were used. First, sequence variability in the Eda-gene, coding for the number of lateral plates, was concordant with the previously observed global pattern. Full plated allele is in high frequencies among marine populations whereas low plated allele dominates in the freshwater populations. Second, a microsatellite based genome scan identified both indications of balancing and directional selection in the three-spined stickleback genome, i.e. loci with unusually similar or unusually different allele frequencies over populations. The directionally selected loci were mainly associated with the adaptation to freshwater. A follow up study conducting a more detailed analysis in a chromosome region containing a putatively selected gene locus identified a fairly large genomic region affected by natural selection. However, this region contained several gene predictions, all of which might be the actual target of natural selection. All in all, the phylogeographic and adaptive divergence studies indicate that most of the genetic divergence has occurred in the freshwater populations whereas the marine populations have remained relatively uniform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminate—“plastic”—loci, where a plastic locus had a finite probability in each generation of functioning (being switched “on”) or not functioning (being switched “off”). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speed control of ac motors requires variable frequency, variable current, or variable voltage supply. Variable frequency supply can be obtained directly from a fixed frequency supply by using a frequency converter or from a dc source using inverters. In this paper a control technique for reference wave adaptive-current generation by modulating the inverter voltage is explained. Extension of this technique for three-phase induction-motor speed control is briefly explained. The oscillograms of the current waveforms obtained from the experimental setup are also shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.