913 resultados para Discrete Time Branching Processes
Resumo:
The formulation of a geotechnical model and the associated prediction of the mechanical behaviour is a challenge engineers need to overcome in order to optimize tunnel design and meet project requirements. Special challenges arise in cases where rocks and rockmasses are susceptible to time-effects and time-dependent processes govern. Progressive rockmass deformation and instability, time-dependent overloading of support and delayed failures are commonly the result of time-dependent phenomena. The research work presented in this thesis serves as an attempt to provide more insight into the time-dependent behaviour of rocks. Emphasis is given on investigating and analyzing creep deformation and time-dependent stress relaxation phenomenon at the laboratory scale and in-depth analyses are presented. This thesis further develops the understanding of these phenomena and practical yet scientific tools for estimating and predicting the long-term strength and the maximum stress relaxation of rock materials are proposed. The identification of the existence of three distinct behavioural stages during stress relaxation is presented and discussed. The main observations associated with time-dependent behaviour are employed in numerical analyses and applied at the tunnel scale. A new approach for simulating and capturing the time-dependent behaviour coupled with the tunnel advancement effect is also developed and analyzed. Guidance is provided to increase the understanding of the support-rockmass interaction and the main implications and significance of time-dependent behaviour associated with rock tunnelling are discussed. The work presented in this thesis advances the scientific understanding of time-dependent rock and rockmass behaviour, increases the awareness of how such phenomena are captured numerically, and lays out a framework for dealing with such deformations when predicting tunnel deformations. Practical aspects of this thesis are also presented, which will increase their usage in the associated industries and close the gap between the scientific and industry communities.
Resumo:
In this work, we perform a first approach to emotion recognition from EEG single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology -- Single channel EEG signals are analyzed and processed using several window sizes by performing a statistical analysis over features in the time and frequency domains -- Finally, a neural network obtained an average accuracy rate of 99% of classification in two emotional states such as happiness and sadness
Resumo:
The challenge of detecting a change in the distribution of data is a sequential decision problem that is relevant to many engineering solutions, including quality control and machine and process monitoring. This dissertation develops techniques for exact solution of change-detection problems with discrete time and discrete observations. Change-detection problems are classified as Bayes or minimax based on the availability of information on the change-time distribution. A Bayes optimal solution uses prior information about the distribution of the change time to minimize the expected cost, whereas a minimax optimal solution minimizes the cost under the worst-case change-time distribution. Both types of problems are addressed. The most important result of the dissertation is the development of a polynomial-time algorithm for the solution of important classes of Markov Bayes change-detection problems. Existing techniques for epsilon-exact solution of partially observable Markov decision processes have complexity exponential in the number of observation symbols. A new algorithm, called constellation induction, exploits the concavity and Lipschitz continuity of the value function, and has complexity polynomial in the number of observation symbols. It is shown that change-detection problems with a geometric change-time distribution and identically- and independently-distributed observations before and after the change are solvable in polynomial time. Also, change-detection problems on hidden Markov models with a fixed number of recurrent states are solvable in polynomial time. A detailed implementation and analysis of the constellation-induction algorithm are provided. Exact solution methods are also established for several types of minimax change-detection problems. Finite-horizon problems with arbitrary observation distributions are modeled as extensive-form games and solved using linear programs. Infinite-horizon problems with linear penalty for detection delay and identically- and independently-distributed observations can be solved in polynomial time via epsilon-optimal parameterization of a cumulative-sum procedure. Finally, the properties of policies for change-detection problems are described and analyzed. Simple classes of formal languages are shown to be sufficient for epsilon-exact solution of change-detection problems, and methods for finding minimally sized policy representations are described.
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.
Resumo:
Consider a random medium consisting of N points randomly distributed so that there is no correlation among the distances separating them. This is the random link model, which is the high dimensionality limit (mean-field approximation) for the Euclidean random point structure. In the random link model, at discrete time steps, a walker moves to the nearest point, which has not been visited in the last mu steps (memory), producing a deterministic partially self-avoiding walk (the tourist walk). We have analytically obtained the distribution of the number n of points explored by the walker with memory mu=2, as well as the transient and period joint distribution. This result enables us to explain the abrupt change in the exploratory behavior between the cases mu=1 (memoryless walker, driven by extreme value statistics) and mu=2 (walker with memory, driven by combinatorial statistics). In the mu=1 case, the mean newly visited points in the thermodynamic limit (N >> 1) is just < n >=e=2.72... while in the mu=2 case, the mean number < n > of visited points grows proportionally to N(1/2). Also, this result allows us to establish an equivalence between the random link model with mu=2 and random map (uncorrelated back and forth distances) with mu=0 and the abrupt change between the probabilities for null transient time and subsequent ones.
Resumo:
Survival or longevity is an economically important trait in beef cattle. The main inconvenience for its inclusion in selection criteria is delayed recording of phenotypic data and the high computational demand for including survival in proportional hazard models. Thus, identification of a longevity-correlated trait that could be recorded early in life would be very useful for selection purposes. We estimated the genetic relationship of survival with productive and reproductive traits in Nellore cattle, including weaning weight (WW), post-weaning growth (PWG), muscularity (MUSC), scrotal circumference at 18 months (SC18), and heifer pregnancy (HP). Survival was measured in discrete time intervals and modeled through a sequential threshold model. Five independent bivariate Bayesian analyses were performed, accounting for cow survival and the five productive and reproductive traits. Posterior mean estimates for heritability (standard deviation in parentheses) were 0.55 (0.01) for WW, 0.25 (0.01) for PWG, 0.23 (0.01) for MUSC, and 0.48 (0.01) for SC18. The posterior mean estimates (95% confidence interval in parentheses) for the genetic correlation with survival were 0.16 (0.13-0.19), 0.30 (0.25-0.34), 0.31 (0.25-0.36), 0.07 (0.02-0.12), and 0.82 (0.78-0.86) for WW, PWG, MUSC, SC18, and HP, respectively. Based on the high genetic correlation and heritability (0.54) posterior mean estimates for HP, the expected progeny difference for HP can be used to select bulls for longevity, as well as for post-weaning gain and muscle score.
Resumo:
This paper studies a nonlinear, discrete-time matrix system arising in the stability analysis of Kalman filters. These systems present an internal coupling between the state components that gives rise to complex dynamic behavior. The problem of partial stability, which requires that a specific component of the state of the system converge exponentially, is studied and solved. The convergent state component is strongly linked with the behavior of Kalman filters, since it can be used to provide bounds for the error covariance matrix under uncertainties in the noise measurements. We exploit the special features of the system-mainly the connections with linear systems-to obtain an algebraic test for partial stability. Finally, motivated by applications in which polynomial divergence of the estimates is acceptable, we study and solve a partial semistability problem.
Resumo:
This paper deals with the problem of state prediction for descriptor systems subject to bounded uncertainties. The problem is stated in terms of the optimization of an appropriate quadratic functional. This functional is well suited to derive not only the robust predictor for descriptor systems but also that for usual state-space systems. Numerical examples are included in order to demonstrate the performance of this new filter. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this technical note we consider the mean-variance hedging problem of a jump diffusion continuous state space financial model with the re-balancing strategies for the hedging portfolio taken at discrete times, a situation that more closely reflects real market conditions. A direct expression based on some change of measures, not depending on any recursions, is derived for the optimal hedging strategy as well as for the ""fair hedging price"" considering any given payoff. For the case of a European call option these expressions can be evaluated in a closed form.
Resumo:
The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary patterns. Here, we investigate how the performance of this network on pattern recognition task is altered when neurons are removed and the weights of the synapses corresponding to these deleted neurons are divided among the remaining synapses. Five distinct ways of distributing such weights are evaluated. We speculate how this numerical work about synaptic compensation may help to guide experimental studies on memory rehabilitation interventions.
Resumo:
This paper summarizes the processes involved in designing a mathematical model of a growing pasture plant, Stylosanthes scabra Vog. cv. Fitzroy. The model is based on the mathematical formalism of Lindenmayer systems and yields realistic computer-generated images of progressive plant geometry through time. The processes involved in attaining growth data, retrieving useful growth rules, and constructing a virtual plant model are outlined. Progressive output morphological data proved useful for predicting total leaf area and allowed for easier quantification of plant canopy size in terms of biomass and total leaf area.
Resumo:
The importance of the rate of change of the pollution stock in determining the damage to the environment has been an issue of increasing concern in the literature. This paper uses a three-sector (economy, population and environment), non-linear, discrete time, calibrated model to examine pollution control. The model explicitly links economic growth to the health of the environment. The stock of natural resources is affected by the rate of pollution flows, through their impact on the regenerative capacity of the natural resource stock. This can shed useful insights into pollution control strategies, particularly in developing countries where environmental resources are crucial for production in many sectors of the economy. Simulation exercises suggested that, under plausible assumptions, it is possible to reverse undesirable transient dynamics through pollution control expenditure, but this is dependent upon the strategies used for control. The best strategy is to spend money fostering the development of production technologies that reduce pollution rather than spending money dealing with the effects of the pollution flow into the environment. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.
Resumo:
The objective of this paper is to definite Historicity in Economic Sciences applying the principles of Entropy and methodological indeterminism. This implies the definition of two kinds of economic universes: one characterized by ergodicity and reversibility of Time and processes and the other by the opposite properties. The first part will deal with the construction of the subject of study and the nature of the proper analysis to these two universes. Taking such dichotomy into account, the second part will examine its implications as regards to the nature of equilibrium, the properties of stability and instability and the closure of the systems.
Resumo:
A discrete time, multi-gear, and age structured bio-economic model is developed for the East Atlantic bluefin tuna fisheries, a paradigmatic example of the difficulties faced in managing highly migratory fish stocks. The model is used to analyse alternative management strategies for the Regional Fisheries Management Organisation (RFMO) managing this fishery, and to investigate some of the policy implications. For the various scenarios, the optimal stock level varies between 500–800,000 tonnes, which compares with a stock level of 150,000 tonnes in 1995. In other words, there is a very strong case for rebuilding the stock. Moreover, the sustainability of the stock is threatened unless a recovery programme is implemented; indeed, the alternative may be stock collapse. Second, to rebuild the stock, Draconian measures are called for: either outright moratoria over fairly lengthy periods, or possibly a more gradual approach to steady state given by a Total Allowable Catch (TAC) at a low level for an extended period of time. Third, the cost of inefficient gear structure is very high indeed.