843 resultados para DRUG DEVELOPMENT
Resumo:
Recently, in order to accelerate drug development, trials that use adaptive seamless designs such as phase II/III clinical trials have been proposed. Phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages. Using stage 1 data, an interim analysis is performed to answer phase II objectives and after collection of stage 2 data, a final confirmatory analysis is performed to answer phase III objectives. In this paper we consider phase II/III clinical trials in which, at stage 1, several experimental treatments are compared to a control and the apparently most effective experimental treatment is selected to continue to stage 2. Although these trials are attractive because the confirmatory analysis includes phase II data from stage 1, the inference methods used for trials that compare a single experimental treatment to a control and do not have an interim analysis are no longer appropriate. Several methods for analysing phase II/III clinical trials have been developed. These methods are recent and so there is little literature on extensive comparisons of their characteristics. In this paper we review and compare the various methods available for constructing confidence intervals after phase II/III clinical trials.
Resumo:
Simulated intestinal fluids (SIFs) used to assay the solubility of orally administered drugs are typically based on a single bile salt; sodium taurocholate (STC). The aim of this study was to develop mimetic intestinal fluids with a closer similarity to physiological fluids than those reported to date by developing a mixed bile salt (MBS) system (STC, sodium glycodeoxycholate, sodium deoxycholate; 60:39:1) with different concentrations of lecithin, the preponderant intestinal phospholipid. Hydrocortisone and progesterone were used as model drugs to evaluate systematically the influence of SIF composition on solubility. Increasing total bile salt concentration from 0 to 30 mM increased hydrocortisone and progesterone solubility by 2- and ∼25-fold, respectively. Accordingly, higher solubilities were measured in the fed-state compared to the fasted-state SIFs. Progesterone showed the greatest increases in solubility in STC and MBS systems (2-7-fold) compared to hydrocortisone (no significant change; P>0.05) as lecithin concentration was increased. Overall, MBS systems gave similar solubility profiles to STC. In conclusion, the addenda of MBS and lecithin were found to be secondary to the influence of BS concentration. These data provide a foundation for the design of more bio-similar media for pivotal decision-guiding assays in drug development and quality control settings.
Resumo:
In most in vitro studies of oral drug permeability, little attempt is made to reproduce the gastrointestinal lumenal environment. The aim of this study was to evaluate the compatibility of simulated intestinal fluid (SIF) solutions with Caco-2 cell monolayers and Ussing chamber-mounted rat ileum under standard permeability experiment protocols. In preliminary experiments, fasted-state simulated intestinal fluid (FaSSIF) and fed-state simulated intestinal fluid (FeSSIF) solutions based on the dissolution medium formulae of Dressman and co-workers (1998) were modified for compatibility with Caco-2 cells to produce FaS-SIF and FeSSIF "transport" solutions for use with in vitro permeability models. For Caco-2 cells exposed to FaSSIF and FESSIF transport solutions, the transepithelial electrical resistance was maintained for over 4 h and mannitol permeability was equivalent to that in control (Hank's Balanced Salt Solution-treated) cell layers. Scanning electron microscopy revealed that microvilli generally maintained a normal distribution, although some shortening of microvilli and occasional small areas of denudation were observed. For rat ileum in the Ussing chambers, the potential difference (PD) collapsed to zero over 120 min when exposed to the FaSSIF transport solution and an even faster collapse of the PD was observed when the FeSSIF transport solution was used. Electron micrographs revealed erosion of the villi tips and substantial denudation of the microvilli after exposure of ileal tissue to FaSSIF and FeSSIF solutions, and permeability to mannitol was increased by almost two-fold. This study indicated that FaSSIF and FeSSIF transport solutions can be used with Caco-2 monolayers to evaluate drug permeability, but rat ileum in Ussing chambers is adversely affected by these solutions. Metoprolol permeability in Caco-2 experiments was reduced by 33% using the FaSSIF and 75% using the FeSSIF compared to permeability measured using HBSS. This illustrates that using physiological solutions can influence permeability measurements.
Resumo:
Incorporating an emerging therapy as a new randomisation arm in a clinical trial that is open to recruitment would be desirable to researchers, regulators and patients to ensure that the trial remains current, new treatments are evaluated as quickly as possible, and the time and cost for determining optimal therapies is minimised. It may take many years to run a clinical trial from concept to reporting within a rapidly changing drug development environment; hence, in order for trials to be most useful to inform policy and practice, it is advantageous for them to be able to adapt to emerging therapeutic developments. This paper reports a comprehensive literature review on methodologies for, and practical examples of, amending an ongoing clinical trial by adding a new treatment arm. Relevant methodological literature describing statistical considerations required when making this specific type of amendment is identified, and the key statistical concepts when planning the addition of a new treatment arm are extracted, assessed and summarised. For completeness, this includes an assessment of statistical recommendations within general adaptive design guidance documents. Examples of confirmatory ongoing trials designed within the frequentist framework that have added an arm in practice are reported; and the details of the amendment are reviewed. An assessment is made as to how well the relevant statistical considerations were addressed in practice, and the related implications. The literature review confirmed that there is currently no clear methodological guidance on this topic, but that guidance would be advantageous to help this efficient design amendment to be used more frequently and appropriately in practice. Eight confirmatory trials were identified to have added a treatment arm, suggesting that trials can benefit from this amendment and that it can be practically feasible; however, the trials were not always able to address the key statistical considerations, often leading to uninterpretable or invalid outcomes. If the statistical concepts identified within this review are considered and addressed during the design of a trial amendment, it is possible to effectively assess a new treatment arm within an ongoing trial without compromising the original trial outcomes.
Resumo:
Background Despite the promising benefits of adaptive designs (ADs), their routine use, especially in confirmatory trials, is lagging behind the prominence given to them in the statistical literature. Much of the previous research to understand barriers and potential facilitators to the use of ADs has been driven from a pharmaceutical drug development perspective, with little focus on trials in the public sector. In this paper, we explore key stakeholders’ experiences, perceptions and views on barriers and facilitators to the use of ADs in publicly funded confirmatory trials. Methods Semi-structured, in-depth interviews of key stakeholders in clinical trials research (CTU directors, funding board and panel members, statisticians, regulators, chief investigators, data monitoring committee members and health economists) were conducted through telephone or face-to-face sessions, predominantly in the UK. We purposively selected participants sequentially to optimise maximum variation in views and experiences. We employed the framework approach to analyse the qualitative data. Results We interviewed 27 participants. We found some of the perceived barriers to be: lack of knowledge and experience coupled with paucity of case studies, lack of applied training, degree of reluctance to use ADs, lack of bridge funding and time to support design work, lack of statistical expertise, some anxiety about the impact of early trial stopping on researchers’ employment contracts, lack of understanding of acceptable scope of ADs and when ADs are appropriate, and statistical and practical complexities. Reluctance to use ADs seemed to be influenced by: therapeutic area, unfamiliarity, concerns about their robustness in decision-making and acceptability of findings to change practice, perceived complexities and proposed type of AD, among others. Conclusions There are still considerable multifaceted, individual and organisational obstacles to be addressed to improve uptake, and successful implementation of ADs when appropriate. Nevertheless, inferred positive change in attitudes and receptiveness towards the appropriate use of ADs by public funders are supportive and are a stepping stone for the future utilisation of ADs by researchers.
Resumo:
Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.
Resumo:
Morphine is one of the most prescribed and effective drugs used for the treatment of acute and chronic pain conditions. In addition to its central effects, morphine can also produce peripheral analgesia. However, the mechanisms underlying this peripheral action of morphine have not yet been fully elucidated. Here, we show that the peripheral antinociceptive effect of morphine is lost in neuronal nitric-oxide synthase null mice and that morphine induces the production of nitric oxide in primary nociceptive neurons. The activation of the nitric-oxide pathway by morphine was dependent on an initial stimulation of PI3K gamma/AKT protein kinase B (AKT) and culminated in increasedactivation of K(ATP) channels. In the latter, this intracellular signaling pathway might cause a hyperpolarization of nociceptive neurons, and it is fundamental for the direct blockade of inflammatory pain by morphine. This understanding offers new targets for analgesic drug development.
Resumo:
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.
Resumo:
Schistosomiasis is considered the second most important tropical parasitic disease, with severe socioeconomic consequences for millions of people worldwide. Schistosoma monsoni, one of the causative agents of human schistosomiasis, is unable to synthesize purine nucleotides de novo, which makes the enzymes of the purine salvage pathway important targets for antischistosomal drug development. In the present work, we describe the development of a pharmacophore model for ligands of S. mansoni purine nucleoside phosphorylase (SmPNP) as well as a pharmacophore-based virtual screening approach, which resulted in the identification of three thioxothiazolidinones (1-3) with substantial in vitro inhibitory activity against SmPNP. Synthesis, biochemical evaluation, and structure activity relationship investigations led to the successful development of a small set of thioxothiazolidinone derivatives harboring a novel chemical scaffold as new competitive inhibitors of SmPNP at the low-micromolar range. Seven compounds were identified with IC(50) values below 100 mu M. The most potent inhibitors 7, 10, and 17 with 1050 of 2, 18, and 38 mu M, respectively, could represent new potential lead compounds for further development of the therapy of schistosomiasis.
Resumo:
CNPq
Resumo:
In this paper artificial neural network (ANN) based on supervised and unsupervised algorithms were investigated for use in the study of rheological parameters of solid pharmaceutical excipients, in order to develop computational tools for manufacturing solid dosage forms. Among four supervised neural networks investigated, the best learning performance was achieved by a feedfoward multilayer perceptron whose architectures was composed by eight neurons in the input layer, sixteen neurons in the hidden layer and one neuron in the output layer. Learning and predictive performance relative to repose angle was poor while to Carr index and Hausner ratio (CI and HR, respectively) showed very good fitting capacity and learning, therefore HR and CI were considered suitable descriptors for the next stage of development of supervised ANNs. Clustering capacity was evaluated for five unsupervised strategies. Network based on purely unsupervised competitive strategies, classic "Winner-Take-All", "Frequency-Sensitive Competitive Learning" and "Rival-Penalize Competitive Learning" (WTA, FSCL and RPCL, respectively) were able to perform clustering from database, however this classification was very poor, showing severe classification errors by grouping data with conflicting properties into the same cluster or even the same neuron. On the other hand it could not be established what was the criteria adopted by the neural network for those clustering. Self-Organizing Maps (SOM) and Neural Gas (NG) networks showed better clustering capacity. Both have recognized the two major groupings of data corresponding to lactose (LAC) and cellulose (CEL). However, SOM showed some errors in classify data from minority excipients, magnesium stearate (EMG) , talc (TLC) and attapulgite (ATP). NG network in turn performed a very consistent classification of data and solve the misclassification of SOM, being the most appropriate network for classifying data of the study. The use of NG network in pharmaceutical technology was still unpublished. NG therefore has great potential for use in the development of software for use in automated classification systems of pharmaceutical powders and as a new tool for mining and clustering data in drug development
Resumo:
Liposomes of soya phosphatidylcholine, cholesterol, and stearylamine (molar ratio 6/3/1) and 0.1% alpha-tocopherol were prepared by the extrusion of multilamellar vesicles through 0.2-mu m polycarbonate membrane. Liposomes were characterized by electron transmission microscopy, and the mean structure diameter was 278 nm. The encapsulation efficiency obtained was 12.73%. The topical anti-inflammatory effect was evaluated in vivo by the cotton pellet granuloma method. We analyzed free piroxicam at 4 mg/kg, piroxicam encapsulated in liposomes added to 1.5% hydroxyethylcellulose (HEC) gel at 1.6 mg/kg, and piroxicam encapsulated in liposomes added to HEC gel at 4 mg/kg; the inhibition of inflammation obtained was 21.1%, 32.8%, and 47.4%, respectively. These results showed that the encapsulation of piroxicam produced an increase of topical anti-inflammatory effect, suggesting that the inhibition of inflammation can be obtained with lower drug concentrations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A large number of functional foods, including those that contain P-glucan, have been shown to prevent the development of cancer and other chronic diseases. The aim of the present study was to elucidate its mechanism of action, as well as to understand its effects as an antigenotoxic, anticlastogenic agent, and to determine its capacity to preserve cell viability. The investigation was carried out in the CHO-k1 and CHO-xrs5 cell lines. The cytokinesis-blocked micronucleus assay indicated that the different doses of beta-glucan examined (5, 10, 20 and 40 mu g/ml) did not show clastogenic effects. In the CHO-k1 cell line, a chemopreventive effect could be observed in all the protocols tested: pre-treatment (% reduction of 35.0-57.3), simultaneous treatment (simple - 5 reduction of 19.7-55.6 and with pre-incubation - of 42.7-56.4) and post-treatment (% reduction of 17.9-37.6). This finding indicates mechanisms of action involving desmutagenesis and bio-antimutagenesis, albeit the latter having a lesser role. However, in the repair-deficient CHO-xrs5 cells, beta-glucan did not show a protective effect with post-treatment (% reduction of 2.96), thus supporting the involvement of bioantimutagenesis. The comet assay in CHO-k1 cells demonstrated that beta-glucan has neither a genotoxic nor an antigenotoxic effect. Cell viability tests indicated that beta-glucan preserves cell viability in both cell lines, preventing apoptotic events. These findings suggest that beta-glucan, when present in foods, could provide them with nutraceutical characteristics and act as a dietary supplement, or that P-glucan could be used in new drug development. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Crystallographic screening has been used to identify new inhibitors for potential target for drug development. Here, we describe the application of the crystallographic screening to assess the structural basis of specificity of ligands against a protein target. The method is efficient and results in detailed crystallographic information. The utility of the method is demonstrated in the study of the structural basis for specificity of ligands for human purine nucleoside phosphorylase (PNP). Purine nucleoside phosphorylase catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. This enzyme is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This methodology may help in the future development of a new generation of PNP inhibitors.