1000 resultados para DNDC simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Good daylighting design in buildings not only provides a comfortable luminous environment, but also delivers energy savings and comfortable and healthy environments for building occupants. Yet, there is still no consensus on how to assess what constitutes good daylighting design. Currently amongst building performance guidelines, Daylighting factors (DF) or minimum illuminance values are the standard; however, previous research has shown the shortcomings of these metrics. New computer software for daylighting analysis contains new more advanced metrics for daylighting (Climate Base Daylight Metrics-CBDM). Yet, these tools (new metrics or simulation tools) are not currently understood by architects and are not used within architectural firms in Australia. A survey of architectural firms in Brisbane showed the most relevant tools used by industry. The purpose of this paper is to assess and compare these computer simulation tools and new tools available architects and designers for daylighting. The tools are assessed in terms of their ease of use (e.g. previous knowledge required, complexity of geometry input, etc.), efficiency (e.g. speed, render capabilities, etc.) and outcomes (e.g. presentation of results, etc. The study shows tools that are most accessible for architects, are those that import a wide variety of files, or can be integrated into the current 3d modelling software or package. These software’s need to be able to calculate for point in times simulations, and annual analysis. There is a current need in these software solutions for an open source program able to read raw data (in the form of spreadsheets) and show that graphically within a 3D medium. Currently, development into plug-in based software’s are trying to solve this need through third party analysis, however some of these packages are heavily reliant and their host program. These programs however which allow dynamic daylighting simulation, which will make it easier to calculate accurate daylighting no matter which modelling platform the designer uses, while producing more tangible analysis today, without the need to process raw data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In power hardware in the loop (PHIL) simulations, a real-time simulated power system is interfaced to a piece of hardware, usually called hardware under test (HuT). A PHIL test can be realized using several simulation tools. Among them Real Time Digital Simulator (RTDS) is an ideal tool to perform complex power system simulations in near real-time. Stable operation of the entire system, along with the accuracy of simulation results are the main concerns regarding a PHIL simulation. In this paper, a simulated power network on RTDS will be interfaced to HuT through a voltage source converter (VSC). Issues around stability and other interface problems are studied and a new method to stabilize some unstable PHIL cases is proposed. PHIL simulation results in PSCAD and RSCAD are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possi-ble morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of gra-phene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crowds of noncombatants play a large and increasingly recognized role in modern military operations and often create substantial difficulties for the combatant forces involved. However, realistic models of crowds are essentially absent from current military simulations. To address this problem, the authors are developing a crowd simulation capable of generating crowds of noncombatant civilians that exhibit a variety of realistic individual and group behaviors at differing levels of fidelity. The crowd simulation is interoperable with existing military simulations using a standard, distributed simulation architecture. Commercial game technology is used in the crowd simulation to model both urban terrain and the physical behaviors of the human characters that make up the crowd. The objective of this article is to present the design and development process of a simulation that integrates commercially available game technology with current military simulations to generate realistic and believable crowd behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bus Rapid Transit (BRT) station is the interface between passenger and service. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses maneuvering into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. However, some systems include operation where express buses pass the critical station, resulting in a proportion of non stopping buses. It is important to understand the operation of the critical busway station under this type of operation, as it affects busway line capacity. This study uses micro simulation to treat the BRT station operation and to analyze the relationship between station Limit state bus capacity (B_ls), Total Bus Capacity (B_ttl). First, the simulation model is developed for Limit state scenario and then a mathematical model is defined, calibrated for a specified range of controlled scenarios of mean and coefficient of variation of dwell time. Thereafter, the proposed B_ls model is extended to consider non stopping buses and B_ttlmodel is defined. The proposed models provides better understanding to the BRT line capacity and is useful for transit authorities for designing better BRT operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper treats the blast response of a pile foundation in saturated sand using explicit nonlinear finite element analysis, considering complex material behavior of soil and soil–pile interaction. Blast wave propagation in the soil is studied and the horizontal deformation of pile and effective stresses in the pile are presented. Results indicate that the upper part of the pile to be vulnerable and the pile response decays with distance from the explosive. The findings of this research provide valuable information on the effects of underground explosions on pile foundation and will guide future development, validation and application of computer models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation has been widely used to estimate the benefits of Cooperative Systems (CS) based on Inter-Vehicular Communications (IVC). This paper presents a new architecture built with the SiVIC simulator and the RTMaps™ multisensors prototyping platform. We introduce several improvements from a previous similar architecture, regarding IVC modelisation and vehicles’ control. It has been tuned with on-road measurements to improve fidelity. We discuss the results of a freeway emergency braking scenario (EEBL) implemented to validate our architecture’s capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperative Systems provide, through the multiplication of information sources over the road, a lot of potential to improve the safety of road users, especially drivers. However, developing cooperative ITS applications requires additional resources compared to non-cooperative applications which are both time consuming and expensive. In this paper, we present a simulation architecture aimed at prototyping cooperative ITS applications in an accurate and detailed, close-to-reality environment; the architecture is designed to be modular and generalist. It can be used to simulate any type of CS applications as well as augmented perception. Then, we discuss the results of two applications deployed with our architecture, using a common freeway emergency braking scenario. The first application is Emergency Electronic Brake Light (EEBL); we discuss improvements in safety in terms of the number of crashes and the severity of crashes. The second application compares the performance of a cooperative risk assessment using an augmented map against a non-cooperative approach based on local-perception only. Our results show a systematic improvement of forward warning time for most vehicles in the string when using the augmented-map-based risk assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Monte Carlo simulation for radiotherapy dose calculation can provide more accurate results when compared to the analytical methods usually found in modern treatment planning systems, especially in regions with a high degree of inhomogeneity. These more accurate results acquired using Monte Carlo simulation however, often require orders of magnitude more calculation time so as to attain high precision, thereby reducing its utility within the clinical environment. This work aims to improve the utility of Monte Carlo simulation within the clinical environment by developing techniques which enable faster Monte Carlo simulation of radiotherapy geometries. This is achieved principally through the use new high performance computing environments and simpler alternative, yet equivalent representations of complex geometries. Firstly the use of cloud computing technology and it application to radiotherapy dose calculation is demonstrated. As with other super-computer like environments, the time to complete a simulation decreases as 1=n with increasing n cloud based computers performing the calculation in parallel. Unlike traditional super computer infrastructure however, there is no initial outlay of cost, only modest ongoing usage fees; the simulations described in the following are performed using this cloud computing technology. The definition of geometry within the chosen Monte Carlo simulation environment - Geometry & Tracking 4 (GEANT4) in this case - is also addressed in this work. At the simulation implementation level, a new computer aided design interface is presented for use with GEANT4 enabling direct coupling between manufactured parts and their equivalent in the simulation environment, which is of particular importance when defining linear accelerator treatment head geometry. Further, a new technique for navigating tessellated or meshed geometries is described, allowing for up to 3 orders of magnitude performance improvement with the use of tetrahedral meshes in place of complex triangular surface meshes. The technique has application in the definition of both mechanical parts in a geometry as well as patient geometry. Static patient CT datasets like those found in typical radiotherapy treatment plans are often very large and present a significant performance penalty on a Monte Carlo simulation. By extracting the regions of interest in a radiotherapy treatment plan, and representing them in a mesh based form similar to those used in computer aided design, the above mentioned optimisation techniques can be used so as to reduce the time required to navigation the patient geometry in the simulation environment. Results presented in this work show that these equivalent yet much simplified patient geometry representations enable significant performance improvements over simulations that consider raw CT datasets alone. Furthermore, this mesh based representation allows for direct manipulation of the geometry enabling motion augmentation for time dependant dose calculation for example. Finally, an experimental dosimetry technique is described which allows the validation of time dependant Monte Carlo simulation, like the ones made possible by the afore mentioned patient geometry definition. A bespoke organic plastic scintillator dose rate meter is embedded in a gel dosimeter thereby enabling simultaneous 3D dose distribution and dose rate measurement. This work demonstrates the effectiveness of applying alternative and equivalent geometry definitions to complex geometries for the purposes of Monte Carlo simulation performance improvement. Additionally, these alternative geometry definitions allow for manipulations to be performed on otherwise static and rigid geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deterministic computer simulation of physical experiments is now a common technique in science and engineering. Often, physical experiments are too time consuming, expensive or impossible to conduct. Complex computer models or codes, rather than physical experiments lead to the study of computer experiments, which are used to investigate many scientific phenomena. A computer experiment consists of a number of runs of the computer code with different input choices. The Design and Analysis of Computer Experiments is a rapidly growing technique in statistical experimental design. This paper aims to discuss some practical issues when designing a computer simulation and/or experiments for manufacturing systems. A case study approach is reviewed and presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the initial stage of films assembled by energetic C36 fullerenes on diamond (001)–(2 × 1) surface at low-temperature was investigated by molecular dynamics simulation using the Brenner potential. The incident energy was first uniformly distributed within an energy interval 20–50 eV, which was known to be the optimum energy range for chemisorption of single C36 on diamond (001) surface. More than one hundred C36 cages were impacted one after the other onto the diamond surface by randomly selecting their orientation as well as the impact position relative to the surface. The growth of films was found to be in three-dimensional island mode, where the deposited C36 acted as building blocks. The study of film morphology shows that it retains the structure of a free C36 cage, which is consistent with Low Energy Cluster Beam Deposition (LECBD) experiments. The adlayer is composed of many C36-monomers as well as the covalently bonded C36 dimers and trimers which is quite different from that of C20 fullerene-assembled film, where a big polymerlike chain was observed due to the stronger interaction between C20 cages. In addition, the chemisorption probability of C36 fullerenes is decreased with increasing coverage because the interaction between these clusters is weaker than that between the cluster and the surface. When the incident energy is increased to 40–65 eV, the chemisorption probability is found to increased and more dimers and trimers as well as polymerlike-C36 were observed on the deposited films. Furthermore, C36 film also showed high thermal stability even when the temperature was raised to 1500 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of small metal clusters (Cu, Au and Al) on f.c.c. metals (Cu, Au and Ni) has been studied by molecular dynamics simulation using Finnis–Sinclair (FS) potential. The impact energy varied from 0.01 to 10 eV/atom. First, the deposition of single cluster was simulated. We observed that, even at much lower energy, a small cluster with (Ih) icosahedral symmetry was reconstructed to match the substrate structure (f.c.c.) after deposition. Next, clusters were modeled to drop, one after the other, on the surface. The nanostructure was found by soft landing of Au clusters on Cu with increasing coverage, where interfacial energy dominates. While at relatively higher deposition energy (a few eV), the ordered f.c.c.-like structure was observed in the first adlayer of the film formed by Al clusters depositing on Ni substrate. This characteristic is mainly attributive to the ballistic collision. Our results indicate that the surface morphology synthesized by cluster deposition could be controlled by experimental parameters, which will be helpful for controlled design of nanostructure.