999 resultados para Cyclic Codes
Resumo:
One of the major tasks in swarm intelligence is to design decentralized but homogenoeus strategies to enable controlling the behaviour of swarms of agents. It has been shown in the literature that the point of convergence and motion of a swarm of autonomous mobile agents can be controlled by using cyclic pursuit laws. In cyclic pursuit, there exists a predefined cyclic connection between agents and each agent pursues the next agent in the cycle. In this paper we generalize this idea to a case where an agent pursues a point which is the weighted average of the positions of the remaining agents. This point correspond to a particular pursuit sequence. Using this concept of centroidal cyclic pursuit, the behavior of the agents is analyzed such that, by suitably selecting the agents' gain, the rendezvous point of the agents can be controlled, directed linear motion of the agents can be achieved, and the trajectories of the agents can be changed by switching between the pursuit sequences keeping some of the behaviors of the agents invariant. Simulation experiments are given to support the analytical proofs.
Resumo:
The minimum distance of linear block codes is one of the important parameter that indicates the error performance of the code. When the code rate is less than 1/2, efficient algorithms are available for finding minimum distance using the concept of information sets. When the code rate is greater than 1/2, only one information set is available and efficiency suffers. In this paper, we investigate and propose a novel algorithm to find the minimum distance of linear block codes with the code rate greater than 1/2. We propose to reverse the roles of information set and parity set to get virtually another information set to improve the efficiency. This method is 67.7 times faster than the minimum distance algorithm implemented in MAGMA Computational Algebra System for a (80, 45) linear block code.
Resumo:
The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.
Explicit and Optimal Exact-Regenerating Codes for the Minimum-Bandwidth Point in Distributed Storage
Resumo:
In the distributed storage setting that we consider, data is stored across n nodes in the network such that the data can be recovered by connecting to any subset of k nodes. Additionally, one can repair a failed node by connecting to any d nodes while downloading beta units of data from each. Dimakis et al. show that the repair bandwidth d beta can be considerably reduced if each node stores slightly more than the minimum required and characterize the tradeoff between the amount of storage per node and the repair bandwidth. In the exact regeneration variation, unlike the functional regeneration, the replacement for a failed node is required to store data identical to that in the failed node. This greatly reduces the complexity of system maintenance. The main result of this paper is an explicit construction of codes for all values of the system parameters at one of the two most important and extreme points of the tradeoff - the Minimum Bandwidth Regenerating point, which performs optimal exact regeneration of any failed node. A second result is a non-existence proof showing that with one possible exception, no other point on the tradeoff can be achieved for exact regeneration.
Resumo:
In the distributed storage setting introduced by Dimakis et al., B units of data are stored across n nodes in the network in such a way that the data can be recovered by connecting to any k nodes. Additionally one can repair a failed node by connecting to any d nodes while downloading at most beta units of data from each node. In this paper, we introduce a flexible framework in which the data can be recovered by connecting to any number of nodes as long as the total amount of data downloaded is at least B. Similarly, regeneration of a failed node is possible if the new node connects to the network using links whose individual capacity is bounded above by beta(max) and whose sum capacity equals or exceeds a predetermined parameter gamma. In this flexible setting, we obtain the cut-set lower bound on the repair bandwidth along with a constructive proof for the existence of codes meeting this bound for all values of the parameters. An explicit code construction is provided which is optimal in certain parameter regimes.
Resumo:
Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error pe(0 <= p(e) < 0.5). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small p(e) should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low p(e) and high p(e) regimes. For the low p(e) regime, convolutional codes with good distance properties show good performance. For the high p(e) regime, convolutional codes that have a good slope ( the minimum normalized cycle weight) are seen to be good. We derive a lower bound on the slope of any rate b/c convolutional code with a certain degree.
Resumo:
Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.
Resumo:
Cooperative communication using rateless codes, in which the source transmits an infinite number of parity bits to the destination until the receipt of an acknowledgment, has recently attracted considerable interest. It provides a natural and efficient mechanism for accumulating mutual information from multiple transmitting relays. We develop an analysis of queued cooperative relay systems that combines the communication-theoretic transmission aspects of cooperative communication using rateless codes over Rayleigh fading channels with the queuing-theoretic aspects associated with buffering messages at the relays. Relay cooperation combined with queuing reduces the message transmission times and also helps distribute the traffic load in the network, which improves throughput significantly.
Resumo:
A hyperconjugative influence may be an additional factor in Z-alkylation being promoted by a syn-axial ester in enolates formed from conformationally immobilised 6-cyclic beta-ketoesters.
Resumo:
The topological disposition of Wolfgram proteins (WP) and their relationship with 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in human, rat, sheep, bovine, guinea pig and chicken CNS myelin was investigated. Controlled digestion of myelin with trypsin gave a 35KDa protein band (WP-t) when electrophoresed on dodecyl sulfate-polyacrylamide gel in all species. Western blot analysis showed that the WP-t was derived from WP. WP-t was also formed when rat myelin was treated with other proteases such as kallikrein, thermolysin and leucine aminopeptidase. Staining for CNPase activity on nitrocellulose blots showed that WP-t is enzymatically active. Much of the CNPase activity remained with the membrane fraction even after treatment with high concentrations of trypsin when WP were completely hydrolysed and no protein bands with M.W > 14KDa were detected on the gels. Therefore protein fragments of WP with M.W < 14KDa may contain CNPase activity. From these results, it is suggested that the topological disposition of all the various WP is such that a 35KDa fragment is embedded in the lipid bilayer and the remaining fragment exposed at the intraperiod line in the myelin structure which may play a role in the initiation of myelinogenesis.
Resumo:
A general and simple methodology for spirocyclopentannulation of cyclic ketones (or 4,4-disubstituted cyclopentenones from acyclic ketones) and its application in the synthesis of the spirodienone 7 via a prochiral precursor constituting a formal total synthesis of (+/-)-acorone (6), are described.
Resumo:
Rigorous elastic-plastic finite element analysis of joints subjected to cyclic loading is carried out. An incremental-iterative algorithm is developed in a modular form combining elasto-plastic material behaviour and contact stress analysis. For the case of the interference fit, the analysis sequentially carries out insertion of the pin and application of the load on the joint, covering possible initiation of separation (and/or yielding) and progressively the receding/advancing contact at the pin-plate interface. Deformations of both the plate and the pin are considered in the analysis. Numerical examples are presented for the case of an interference fit pin in a large plate under remote cyclic tension, and for an interference fit pin lug joint subjected to cyclic loading. A detailed study is carried out for the latter problem considering the effect of change in contact/separation at the pin-plate interface on local stresses, strains and redistribution of these stresses with the spread of a plastic zone. The results of the study are a useful input for the estimation of the fatigue life of joints. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Code Division Multiple Access (CDMA) techniques, by far, had been applied to LAN problems by many investigators, An analytical study of well known algorithms for generation of Orthogonal codes used in FO-CDMA systems like those for prime, quasi-Prime, Optical Orthogonal and Matrix codes has been presented, Algorithms for OOCs like Greedy/Modified Greedy/Accelerated Greedy algorithms are implemented. Many speed-up enhancements. for these algorithms are suggested. A novel Synthetic Algorithm based on Difference Sets (SADS) is also proposed. Investigations are made to vectorise/parallelise SADS to implement the source code on parallel machines. A new matrix for code families of OOCs with different seed code-words but having the same (n,w,lambda) set is formulated.
Resumo:
2',3'-cyclic nucleotides are intermediates and substrates of Ribonuclease (RNase)-catalysed reactions. The characterization of the equilibrium conformation as well as the flexibility inherent in these molecules helps in understanding the enzymatic action of RNases. The present study explores parameters like phase angle, glycosydic torsion angle and hydrogen bond to find possible interrelationship between them through Molecular Dynamics (MD) simulations on 3'-GMP, 3'-UMP, A>p, G>p, U>p, C>p, GpA>p and UpA>p. Interesting results of the effect of cyclisation and other constraints such as hydrogen bond between certain groups on the equilibrium ribose conformation have emerged from this study.
Resumo:
Piperidinium tetrathiotungstate has been found to react with a number of 1,n-dihalo compounds to afford the corresponding cyclic disulfides in good yields, under mild reaction conditions. This new methodology has been used as a key step in the synthesis of (+/-)-lipoic acid (35) and asparagusic acid (37).