997 resultados para Current transformer
Resumo:
Abstract The Chinese Emergency Medicine System is primarily composed of three sectors; prehospital care, emergency department in a city hospital, and intensive care unit ward. While all sectors are integral to the system, the prehospital care system is less developed than the others. There are many possible contributors to the under-development of the prehospital care system, however, workforce issues may play a significant role. Firstly, there is no officially recognised paramedic profession in China. The staff members working in the prehospital care system are medical doctors, registered nurses, patient-carriers, and drivers. Secondly, these doctors and nurses are either over-qualified or under-qualified for practicing in the prehospital care system. Lastly, Chinese health professionals have taken actions to improve the current workforce status with initiatives such as short-term training workshops for doctors and nurses, implementation of a trial unit in a university, and development of a Major Degree of Emergency Medicine in a medical university. All of these actions are important steps toward improving the current workforce status in the prehospital care system. However, a long term workforce development plan is still essential for the Chinese system, and implementation of a professional paramedic education system in a medical university/college in China, may provide the solution. Keywords: China; emergency medicine system; health services; prehospital care system; workforce; service delivery
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
Clinical information systems have become important tools in contemporary clinical patient care. However, there is a question of whether the current clinical information systems are able to effectively support clinicians in decision making processes. We conducted a survey to identify some of the decision making issues related to the use of existing clinical information systems. The survey was conducted among the end users of the cardiac surgery unit, quality and safety unit, intensive care unit and clinical costing unit at The Prince Charles Hospital (TPCH). Based on the survey results and reviewed literature, it was identified that support from the current information systems for decision-making is limited. Also, survey results showed that the majority of respondents considered lack in data integration to be one of the major issues followed by other issues such as limited access to various databases, lack of time and lack in efficient reporting and analysis tools. Furthermore, respondents pointed out that data quality is an issue and the three major data quality issues being faced are lack of data completeness, lack in consistency and lack in data accuracy. Conclusion: Current clinical information systems support for the decision-making processes in Cardiac Surgery in this institution is limited and this could be addressed by integrating isolated clinical information systems.
Resumo:
"Defrauding land titles systems impacts upon us all. Those who deal in land include ordinary citizens, big business, small business, governments, not-for-profit organisation, deceased estates...Fraud here touches almost everybody." the thesis presented in this paper is that the current and disparate steps taken by jurisdictions to alleviate land fraud associated with identity-based crimes are inadequate. The centrepiece of the analysis is the consideration of two scenarios that have recently occurred. One is the typical scenario where a spouse forges the partner's signature to obtain a mortgage from a financial institution. The second is atypical. It involves a sophisticated overseas fraud duping many stakeholders involved in the conveyancing process. After outlining these scenarios, we will examine how identity verification requirements of the United Kingdom, Ontario, the Australian states, and New Zealand would have been applied to these two frauds. Our conclusion is that even though some jurisdictions may have prevented the frauds from occurring, the current requirements are inadequate. We use the lessons learnt to propose what we consider core principles for identity verification in land transactions.
Resumo:
Food insecurity is the limited access to, or availability of, nutritious, culturally-appropriate and safe foods, or the inability to access these foods by socially acceptable means. In Australia, the monitoring of food insecurity is limited to the use of a single item, included in the three-yearly National Health Survey (NHS). The current research comprised a) a review of the literature and available tools to measure food security, b) piloting and adaptation of the more comprehensive 16-item United States Department of Agriculture (USDA) Food Security Survey Module (FSSM), and c) a cross-sectional study comparing this more comprehensive tool, and it’s 10- and 6- item short forms, with the current single-item used in the NHS, among a sample of households in disadvantaged urban-areas of Brisbane, Australia. Findings have shown that internationally the 16-item USDA-FSSM is the most widely used tool for the measurement of food insecurity. Furthermore, of the validated tools that exist to measure food insecurity, sensitivity and reliability decline as the number of questions in a tool decreases. Among an Australian sample, the current single-measure utilised in the NHS yielded a significantly lower prevalence for food insecurity compared to the 16-item USDA-FSSM and it’s two shorter forms respectively (four and two percentage points lower respectively). These findings suggest that the current prevalence of food insecurity (estimated at 6% in the most recent NHS) may have been underestimated, and have important implications for the development of an effective means of monitoring food security within the context of a developed country.
Resumo:
Objective: Food insecurity may be associated with a number of adverse health and social outcomes however our knowledge of its public health significance in Australia has been limited by use of a single-item measure in the Australian National Health Surveys (NHS) and, more recently, the exclusion of food security items from these surveys. The current study compares prevalence estimates of food insecurity in disadvantaged urban areas of Brisbane using the one-item NHS measure with three adaptations of the United States Department of Agriculture Food Security Survey Module (USDA-FSSM). Design: Data were collected by postal survey (n= 505, 53% response). Food security status was ascertained by the measure used in the NHS, and the 6-, 10- and 18-item versions of the USDA-FSSM. Demographic characteristics of the sample, prevalence estimates of food insecurity and different levels of food insecurity estimated by each tool were determined. Setting: Disadvantaged suburbs of Brisbane city, Australia, 2009. Subjects: Individuals aged ≥ 18 years. Results: Food insecurity was prevalent in socioeconomically-disadvantaged urban areas, estimated as 19.5% using the single-item NHS measure. This was significantly less than the 24.6% (P <0.01), 22.0% (P = 0.01) and 21.3% (P = 0.03) identified using the 18-item, 10-item and 6-item versions of the USDA-FSSM, respectively. The proportion of the sample reporting more severe levels of food insecurity were 10.7%, 10% and 8.6% for the 18-, 10- and 6-item USDA measures respectively, however this degree of food insecurity could not be ascertained using the NHS measure. Conclusions: The measure of food insecurity employed in the NHS may underestimate its prevalence and public health significance. Future monitoring and surveillance efforts should seek to employ a more accurate measure.
Resumo:
The exploratory research presented in this discussion paper was undertaken as input to a major research grant application for the Australian Research Council. The research looks at the contribution of the Australian built environment to meet social and environmental needs. The paper examines the following research questions: What are the main challenges facing the Australian built environment? What types of building innovations might address those challenges? The research questions were addressed through desk-top research, involving an international review of (1) relevant academic literature in top-tier construction management and general management journals, and (2) high profile industry reports published internationally. Future research will involve assessing the diffusion of the identified building innovations and gauging their impact on social and environmental goals.
Resumo:
National flag carriers are struggling for survival, not only due to classical reasons such as increase in fuel and tax or natural disasters, but largely due to the inability to quickly adapt to its competitive environment – the emergence of budget and Persian Gulf airlines. In this research, we investigate how airlines can transform their business models via technological and strategic capabilities to become profitable and sustainable passenger experience companies. To formulate recommendations, we analyze customer sentiments via social media to understand what people are saying about the airlines.
Resumo:
Chondritic porous aggregates (CPA's) belong to an important subset of small particles (usually between 5 and 50 micrometers) collected from the stratosphere by high flying aircraft. These aggregates are approximately chondritic in elemental abundance and are composed of many thousands of smaller, submicrometer particles. CPA particles have been the subject of intensive study during the past few years [1-3] and there is strong evidence that they are a new class of extraterrestrial material not represented in the meteorite collection [3,4]. However, CPA's may be related to carbonaceous chondrites and in fact, both may be part of a continuum of primitive extraterrestrial materials [5]. The importance of CPA's stems from suggestions that they are very primitive solar system material possibly derived from early formed proto planets, chondritic parent bodies, or comets [3, 6]. To better understand the origin and evolution of these particles, we have attempted to summarize all of the mineralogical data on identified CPA's published since about 1976.
Resumo:
There is a growing number of organizations and universities now utilising e-learning practices in their teaching and learning programs. These systems have allowed for knowledge sharing and provide opportunities for users to have access to learning materials regardless of time and place. However, while the uptake of these systems is quite high, there is little research into the effectiveness of such systems, particularly in higher education. This paper investigates the methods that are used to study the effectiveness of e-learning systems and the factors that are critical for the success of a learning management system (LMS). Five major success categories are identified in this study and explained in depth. These are the teacher, student, LMS design, learning materials and external support.
Resumo:
The construction industry has been under pressure for many years to produce economical buildings which offer value for money, not only during the construction phase, but more importantly, during the full life of the building. Whole Life Cycle Costing (WLCC) is a relatively new concept for the construction industry especially on residential development and particularly for Malaysia. Discussing the speculation in using WLCC for the Malaysian residential constructions is the aim for this paper and it is one of the research questions on my research. This paper also wants to gather more speculation that may involve through others experienced. Basically, this paper is written to facilitate the current or future individual which will involve in residential property development sector with a new sensible approach to what at times seems impressively confusing especially in simplifying the operations and maintenance services and rehabilitation as well.
Resumo:
In order to obtain a more compact Superconducting Fault Current limiter (SFCL), a special geometry of core and AC coil is required. This results in a unique magnetic flux pattern which differs from those associated with conventional round core arrangements. In this paper the magnetic flux density within a Fault Current Limiter (FCL) is described. Both experimental and analytical approaches are considered. A small scale prototype of an FCL was constructed in order to conduct the experiments. This prototype comprises a single phase. The analysis covers both the steady state and the short-circuit condition. Simulation results were obtained using commercial software based on the Finite Element Method (FEM). The magnetic flux saturating the cores, leakage magnetic flux giving rise to electromagnetic forces and leakage magnetic flux flowing in the enclosing tank are computed.
Resumo:
A general electrical model of a piezoelectric transducer for ultrasound applications consists of a capacitor in parallel with RLC legs. A high power voltage source converter can however generate significant voltage stress across the transducer that creates high leakage currents. One solution is to reduce the voltage stress across the piezoelectric transducer by using an LC filter, however a main drawback is changing the piezoelectric resonant frequency and its characteristics. Thereby it reduces the efficiency of energy conversion through the transducer. This paper proposes that a high frequency current source converter is a suitable topology to drive high power piezoelectric transducers efficiently.