958 resultados para Cost Optimization
Resumo:
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.
Resumo:
OBJECTIVE In this study, the "Progressive Resolution Optimizer PRO3" (Varian Medical Systems) is compared to the previous version "PRO2" with respect to its potential to improve dose sparing to the organs at risk (OAR) and dose coverage of the PTV for head and neck cancer patients. MATERIALS AND METHODS For eight head and neck cancer patients, volumetric modulated arc therapy (VMAT) treatment plans were generated in this study. All cases have 2-3 phases and the total prescribed dose (PD) was 60-72Gy in the PTV. The study is mainly focused on the phase 1 plans, which all have an identical PD of 54Gy, and complex PTV structures with an overlap to the parotids. Optimization was performed based on planning objectives for the PTV according to ICRU83, and with minimal dose to spinal cord, and parotids outside PTV. In order to assess the quality of the optimization algorithms, an identical set of constraints was used for both, PRO2 and PRO3. The resulting treatment plans were investigated with respect to dose distribution based on the analysis of the dose volume histograms. RESULTS For the phase 1 plans (PD=54Gy) the near maximum dose D2% of the spinal cord, could be minimized to 22±5 Gy with PRO3, as compared to 32±12Gy with PRO2, averaged for all patients. The mean dose to the parotids was also lower in PRO3 plans compared to PRO2, but the differences were less pronounced. A PTV coverage of V95%=97±1% could be reached with PRO3, as compared to 86±5% with PRO2. In clinical routine, these PRO2 plans would require modifications to obtain better PTV coverage at the cost of higher OAR doses. CONCLUSION A comparison between PRO3 and PRO2 optimization algorithms was performed for eight head and neck cancer patients. In general, the quality of VMAT plans for head and neck patients are improved with PRO3 as compared to PRO2. The dose to OARs can be reduced significantly, especially for the spinal cord. These reductions are achieved with better PTV coverage as compared to PRO2. The improved spinal cord sparing offers new opportunities for all types of paraspinal tumors and for re-irradiation of recurrent tumors or second malignancies.
Resumo:
Nowadays computing platforms consist of a very large number of components that require to be supplied with diferent voltage levels and power requirements. Even a very small platform, like a handheld computer, may contain more than twenty diferent loads and voltage regulators. The power delivery designers of these systems are required to provide, in a very short time, the right power architecture that optimizes the performance, meets electrical specifications plus cost and size targets. The appropriate selection of the architecture and converters directly defines the performance of a given solution. Therefore, the designer needs to be able to evaluate a significant number of options in order to know with good certainty whether the selected solutions meet the size, energy eficiency and cost targets. The design dificulties of selecting the right solution arise due to the wide range of power conversion products provided by diferent manufacturers. These products range from discrete components (to build converters) to complete power conversion modules that employ diferent manufacturing technologies. Consequently, in most cases it is not possible to analyze all the alternatives (combinations of power architectures and converters) that can be built. The designer has to select a limited number of converters in order to simplify the analysis. In this thesis, in order to overcome the mentioned dificulties, a new design methodology for power supply systems is proposed. This methodology integrates evolutionary computation techniques in order to make possible analyzing a large number of possibilities. This exhaustive analysis helps the designer to quickly define a set of feasible solutions and select the best trade-off in performance according to each application. The proposed approach consists of two key steps, one for the automatic generation of architectures and other for the optimized selection of components. In this thesis are detailed the implementation of these two steps. The usefulness of the methodology is corroborated by contrasting the results using real problems and experiments designed to test the limits of the algorithms.
Resumo:
The technique of Abstract Interpretation has allowed the development of very sophisticated global program analyses which are at the same time provably correct and practical. We present in a tutorial fashion a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, nonfailure, and bounds on resource consumption (time or space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements the described functionality, will be used to illustrate the fundamental ideas.
Resumo:
In this paper, switched reluctance motors (SRM) are proposed as an alternative for electric power assisted steering (EPAS) applications. A prototype machine has been developed as very attractive design for a steering electric motor, both from a cost and size perspective. A fourphase 8/6 SRM drive is designed for a rack type EPAS which should provide a maximum force of 10 kN. Two-dimension finite element analysis is used to validate the design.
Resumo:
With the rising prices of the retail electricity and the decreasing cost of the PV technology, grid parity with commercial electricity will soon become a reality in Europe. This fact, together with less attractive PV feed-in-tariffs in the near future and incentives to promote self-consumption suggest, that new operation modes for the PV Distributed Generation should be explored; differently from the traditional approach which is only based on maximizing the exported electricity to the grid. The smart metering is experiencing a growth in Europe and the United States but the possibilities of its use are still uncertain, in our system we propose their use to manage the storage and to allow the user to know their electrical power and energy balances. The ADSM has many benefits studied previously but also it has important challenges, in this paper we can observe and ADSM implementation example where we propose a solution to these challenges. In this paper we study the effects of the Active Demand-Side Management (ADSM) and storage systems in the amount of consumed local electrical energy. It has been developed on a prototype of a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead–acid batteries, controllable appliances and smart metering. We carried out simulations for long-time experiments (yearly studies) and real measures for short and mid-time experiments (daily and weekly studies). Results show the relationship between the electricity flows and the storage capacity, which is not linear and becomes an important design criterion.
Resumo:
It is generally recognized that information about the runtime cost of computations can be useful for a variety of applications, including program transformation, granularity control during parallel execution, and query optimization in deductive databases. Most of the work to date on compile-time cost estimation of logic programs has focused on the estimation of upper bounds on costs. However, in many applications, such as parallel implementations on distributed-memory machines, one would prefer to work with lower bounds instead. The problem with estimating lower bounds is that in general, it is necessary to account for the possibility of failure of head unification, leading to a trivial lower bound of 0. In this paper, we show how, given type and mode information about procedures in a logic program, it is possible to (semi-automatically) derive nontrivial lower bounds on their computational costs. We also discuss the cost analysis for the special and frequent case of divide-and-conquer programs and show how —as a pragmatic short-term solution —it may be possible to obtain useful results simply by identifying and treating divide-and-conquer programs specially.
Resumo:
We present a tutorial overview of Ciaopp, the Ciao system preprocessor. Ciao is a public-domain, next-generation logic programming system, which subsumes ISO-Prolog and is specifically designed to a) be highly extensible via librarles and b) support modular program analysis, debugging, and optimization. The latter tasks are performed in an integrated fashion by Ciaopp. Ciaopp uses modular, incremental abstract interpretation to infer properties of program predicates and literals, including types, variable instantiation properties (including modes), non-failure, determinacy, bounds on computational cost, bounds on sizes of terms in the program, etc. Using such analysis information, Ciaopp can find errors at compile-time in programs and/or perform partial verification. Ciaopp checks how programs cali system librarles and also any assertions present in the program or in other modules used by the program. These assertions are also used to genérate documentation automatically. Ciaopp also uses analysis information to perform program transformations and optimizations such as múltiple abstract specialization, parallelization (including granularity control), and optimization of run-time tests for properties which cannot be checked completely at compile-time. We illustrate "hands-on" the use of Ciaopp in all these tasks. By design, Ciaopp is a generic tool, which can be easily tailored to perform these and other tasks for different LP and CLP dialects.
Resumo:
Information about the computational cost of programs is potentially useful for a variety of purposes, including selecting among different algorithms, guiding program transformations, in granularity control and mapping decisions in parallelizing compilers, and query optimization in deductive databases. Cost analysis of logic programs is complicated by nondeterminism: on the one hand, procedures can return múltiple Solutions, making it necessary to estímate the number of solutions in order to give nontrivial upper bound cost estimates; on the other hand, the possibility of failure has to be taken into account while estimating lower bounds. Here we discuss techniques to address these problems to some extent.
Resumo:
We present in a tutorial fashion CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost).
Resumo:
An aerodynamic optimization of the ICE 2 high-speed train nose in term of front wind action sensitivity is carried out in this paper. The nose is parametrically defined by Be?zier Curves, and a three-dimensional representation of the nose is obtained using thirty one design variables. This implies a more complete parametrization, allowing the representation of a real model. In order to perform this study a genetic algorithm (GA) is used. Using a GA involves a large number of evaluations before finding such optimal. Hence it is proposed the use of metamodels or surrogate models to replace Navier-Stokes solver and speed up the optimization process. Adaptive sampling is considered to optimize surrogate model fitting and minimize computational cost when dealing with a very large number of design parameters. The paper introduces the feasi- bility of using GA in combination with metamodels for real high-speed train geometry optimization.
Resumo:
The study addresses the need to manage the risk of the purchase price of coal in a power company by changing the management model of the purchasing department. It eliminates the risk of price reduces the cost of buying coal and optimizing the performance of all electricity generation plants belonging to the company. You get more flexibility and optionallity to gain additional benefits both economic and efficiency in the supply to our generation fleet. The tools to achieve the above purpose will be financial derivatives that will be used as elements of management and not as mere speculation in the markets.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon (Si) bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic (PV) applications. Such integration would offer a cost breakthrough for PV technology, unifying the low cost of Si and the efficiency potential of III-V multijunction solar cells. The optimization of the Si solar cells properties in flat-plate PV technology is well-known; nevertheless, it has been proven that the behavior of Si substrates is different when processed in an MOVPE reactor In this study, we analyze several factors influencing the bottom subcell performance, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the passivation quality provided by the GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties.
Resumo:
This paper presents a W-band high-resolution radar sensor for short-range applications. Low-cost technologies have been properly selected in order to implement a versatile and easily scalable radar system. A large operational bandwidth of 9 GHz, required for obtaining high-range resolution, is attained by means of a frequency multiplication-based architecture. The system characterization to identify the performance-limiting stages and the subsequent design optimization are presented. The assessment of system performance for several representative applications has been carried out.
Resumo:
La hipótesis de esta tesis es: "La optimización de la ventana considerando simultáneamente aspectos energéticos y aspectos relativos a la calidad ambiental interior (confort higrotérmico, lumínico y acústico) es compatible, siempre que se conozcan y consideren las sinergias existentes entre ellos desde las primeras fases de diseño". En la actualidad se desconocen las implicaciones de muchas de las decisiones tomadas en torno a la ventana; para que su eficiencia en relación a todos los aspectos mencionados pueda hacerse efectiva es necesaria una herramienta que aporte más información de la actualmente disponible en el proceso de diseño, permitiendo así la optimización integral, en función de las circunstancias específicas de cada proyecto. En la fase inicial de esta investigación se realiza un primer acercamiento al tema, a través del estado del arte de la ventana; analizando la normativa existente, los componentes, las prestaciones, los elementos experimentales y la investigación. Se observa que, en ocasiones, altos requisitos de eficiencia energética pueden suponer una disminución de las prestaciones del sistema en relación con la calidad ambiental interior, por lo que surge el interés por integrar al análisis energético aspectos relativos a la calidad ambiental interior, como son las prestaciones lumínicas y acústicas y la renovación de aire. En este punto se detecta la necesidad de realizar un estudio integral que incorpore los distintos aspectos y evaluar las sinergias que se dan entre las distintas prestaciones que cumple la ventana. Además, del análisis de las soluciones innovadoras y experimentales se observa la dificultad de determinar en qué medida dichas soluciones son eficientes, ya que son soluciones complejas, no caracterizadas y que no están incorporadas en las metodologías de cálculo o en las bases de datos de los programas de simulación. Por lo tanto, se plantea una segunda necesidad, generar una metodología experimental para llevar a cabo la caracterización y el análisis de la eficiencia de sistemas innovadores. Para abordar esta doble necesidad se plantea la optimización mediante una evaluación del elemento acristalado que integre la eficiencia energética y la calidad ambiental interior, combinando la investigación teórica y la investigación experimental. En el ámbito teórico, se realizan simulaciones, cálculos y recopilación de información de distintas tipologías de hueco, en relación con cada prestación de forma independiente (acústica, iluminación, ventilación). A pesar de haber partido con un enfoque integrador, resulta difícil esa integración detectándose una carencia de herramientas disponible. En el ámbito experimental se desarrolla una metodología para la evaluación del rendimiento y de aspectos ambientales de aplicación a elementos innovadores de difícil valoración mediante la metodología teórica. Esta evaluación consiste en el análisis comparativo experimental entre el elemento innovador y un elemento estándar; para llevar a cabo este análisis se han diseñado dos espacios iguales, que denominamos módulos de experimentación, en los que se han incorporado los dos sistemas; estos espacios se han monitorizado, obteniéndose datos de consumo, temperatura, iluminancia y humedad relativa. Se ha realizado una medición durante un periodo de nueve meses y se han analizado y comparado los resultados, obteniendo así el comportamiento real del sistema. Tras el análisis teórico y el experimental, y como consecuencia de esa necesidad de integrar el conocimiento existente se propone una herramienta de evaluación integral del elemento acristalado. El desarrollo de esta herramienta se realiza en base al procedimiento de diagnóstico de calidad ambiental interior (CAI) de acuerdo con la norma UNE 171330 “Calidad ambiental en interiores”, incorporando el factor de eficiencia energética. De la primera parte del proceso, la parte teórica y el estado del arte, se obtendrán los parámetros que son determinantes y los valores de referencia de dichos parámetros. En base a los parámetros relevantes obtenidos se da forma a la herramienta, que consiste en un indicador de producto para ventanas que integra todos los factores analizados y que se desarrolla según la Norma UNE 21929 “Sostenibilidad en construcción de edificios. Indicadores de sostenibilidad”. ABSTRACT The hypothesis of this thesis is: "The optimization of windows considering energy and indoor environmental quality issues simultaneously (hydrothermal comfort, lighting comfort, and acoustic comfort) is compatible, provided that the synergies between these issues are known and considered from the early stages of design ". The implications of many of the decisions made on this item are currently unclear. So that savings can be made, an effective tool is needed to provide more information during the design process than the currently available, thus enabling optimization of the system according to the specific circumstances of each project. The initial phase deals with the study from an energy efficiency point of view, performing a qualitative and quantitative analysis of commercial, innovative and experimental windows. It is observed that sometimes, high-energy efficiency requirements may mean a reduction in the system's performance in relation to user comfort and health, that's why there is an interest in performing an integrated analysis of indoor environment aspects and energy efficiency. At this point a need for a comprehensive study incorporating the different aspects is detected, to evaluate the synergies that exist between the various benefits that meet the window. Moreover, from the analysis of experimental and innovative windows, a difficulty in establishing to what extent these solutions are efficient is observed; therefore, there is a need to generate a methodology for performing the analysis of the efficiency of the systems. Therefore, a second need arises, to generate an experimental methodology to perform characterization and analysis of the efficiency of innovative systems. To address this dual need, the optimization of windows by an integrated evaluation arises, considering energy efficiency and indoor environmental quality, combining theoretical and experimental research. In the theoretical field, simulations and calculations are performed; also information about the different aspects of indoor environment (acoustics, lighting, ventilation) is gathered independently. Despite having started with an integrative approach, this integration is difficult detecting lack available tools. In the experimental field, a methodology for evaluating energy efficiency and indoor environment quality is developed, to be implemented in innovative elements which are difficult to evaluate using a theoretical methodology This evaluation is an experimental comparative analysis between an innovative element and a standard element. To carry out this analysis, two equal spaces, called experimental cells, have been designed. These cells have been monitored, obtaining consumption, temperature, luminance and relative humidity data. Measurement has been performed during nine months and results have been analyzed and compared, obtaining results of actual system behavior. To advance this optimization, windows have been studied from the point of view of energy performance and performance in relation to user comfort and health: thermal comfort, acoustic comfort, lighting comfort and air quality; proposing the development of a methodology for an integrated analysis including energy efficiency and indoor environment quality. After theoretical and experimental analysis and as a result of the need to integrate existing knowledge, a comprehensive evaluation procedure for windows is proposed. This evaluation procedure is developed according to the UNE 171330 "Indoor Environmental Quality", also incorporating energy efficiency and cost as factors to evaluate. From the first part of the research process, outstanding parameters are chosen and reference values of these parameters are set. Finally, based on the parameters obtained, an indicator is proposed as windows product indicator. The indicator integrates all factors analyzed and is developed according to ISO 21929-1:2011"Sustainability in building construction. Sustainability indicators. Part 1: Framework for the development of indicators and a core set of indicators for buildings".