996 resultados para Copepoda, eggs, production as carbon
Resumo:
At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.
Resumo:
The under-ice habitat and fauna were studied during a typical winter situation at three stations in the western Barents Sea. Dense pack ice (7-10/10) prevailed and ice thickness ranged over <0.1-1.6 m covered by <0.1-0.6 m of snow. Air temperatures ranged between -1.8 and -27.5°C. The ice undersides were level, white and smooth. Temperature and salinity profiles in the under-ice water (0-5 m depth) were not stratified (T=-1.9 to -2.0°C and S=34.2-34.7). Concentrations of inorganic nutrients were high and concentrations of algal pigments were very low (0.02 µg chlorophyll a/l), indicating the state of biological winter. Contents of particulate organic carbon and nitrogen ranged over 84.2-241.3 and 5.3-16.4 µg/l, respectively, the C/N ratio over 11.2-15.5 pointing to the dominance of detritus in the under-ice water. Abundances of amphipods at the ice underside were lower than in other seasons: 0-1.8 ind/m**2 for Apherusa glacialis, 0-0.7 ind/m**2 for Onisimus spp., and 0-0.8 ind/m**2 for Gammarus wilkitzkii. A total of 22 metazoan taxa were found in the under-ice water, with copepods as the most diverse and numerous group. Total abundances ranged over 181-2,487 ind/m**3 (biomass: 70-2,439 µg C/m**3), showing lower values than in spring, summer and autumn. The dominant species was the calanoid copepod Pseudocalanus minutus (34-1,485 ind/m**3), contributing 19-65% to total abundances, followed by copepod nauplii (85-548 ind/m**3) and the cyclopoid copepod Oithona similis (44-262 ind/m**3). Sympagic (ice-associated) organisms occurred only rarely in the under-ice water layer.
Resumo:
The structure of the zooplankton foodweb and their dominant carbon fluxes were studied in the upwelling system off northern Chile (Mejillones Bay; 23°S) between October 2000 and December 2002. High primary production (PP) rates (18 gC/m**2 d) were mostly due to the net-phytoplankton size fraction (>23 µm). High PP has been traditionally associated with the wind-driven upwelling fertilizing effect of equatorial subsurface waters, which favour development of a short food chain dominated by a few small clupeiform fish species. The objective of the present work was to study the trophic carbon flow through the first step of this 'classical chain' (from phytoplankton to primary consumers such as copepods and euphausiids) and the carbon flow towards the gelatinous web composed of both filter-feeding and carnivorous zooplankton. To accomplish this objective, feeding experiments with copepods, appendicularians, ctenophores, and chaetognaths were conducted using naturally occurring plankton prey assemblages. Throughout the study, the total carbon ingestion rates showed that the dominant appendicularian species and small copepods consumed an average of 7 and 5 µgC/ind d, respectively. In addition, copepods ingested particles mainly in the size range of nano- and microplankton, whereas appendicularians ingested in the range of pico- and nanoplankton. Small copepods and appendicularians removed a small fraction of total daily PP (range 6-11%). However, when the pico- + nanoplankton fractions were the major contributors to total PP (oligotrophic conditions), grazing by small copepods increased markedly to 86% of total PP. Under these more oligotrophic conditions, the euphausiids grazing increased as well, but only reached values lower than 5% of total PP. During this study, chaetognaths and ctenophores ingested an average of 1 and 14 copepods/ind d, respectively. In terms of biomass consumed, the potential impact of carnivorous gelatinous zooplankton on the small-size copepod community (preferred prey) was important (2-12% of biomass removed daily). However, their impact produced more significant results on copepod abundance (up to 33%), which suggests that carnivorous gelatinous zooplankton may even modulate (control) the abundance of some species as well as the size structure of the copepod community.
Resumo:
The present dataset is part of an interdisciplinary project carried out on board the RV Southern Surveyor off New South Wales (Australia) from the 15th to the 31st October 2010. The main objective of the research voyage was to evaluate how the East Australian Current (EAC) affects the optical, chemical, physical, and biological water properties of the continental shelf and slope off the NSW coast.