928 resultados para Computer input-output equipment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the advent of the computer into the engineering field, the application of the numerical methods to the solution of engineering problems has grown very rapidly. Among the different computer methods of structural analysis the Finite Element (FEM) has been predominantly used. Shells and space structures are very attractive and have been constructed to solve a large variety of functional problems (roofs, industrial building, aqueducts, reservoirs, footings etc). In this type of structures aesthetics, structural efficiency and concept play a very important role. This class of structures can be divided into three main groups, namely continuous (concrete) shells, space frames and tension (fabric, pneumatic, cable etc )structures. In the following only the current applications of the FEM to the analysis of continuous shell structures will be discussed. However, some of the comments on this class of shells can be also applied to some extend to the others, but obviously specific computational problems will be restricted to the continuous shells. Different aspects, such as, the type of elements,input-output computational techniques etc, of the analysis of shells by the FEM will be described below. Clearly, the improvements and developments occurring in general for the FEM since its first appearance in the fifties have had a significative impact on the particular class of structures under discussion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente Tesis analiza y desarrolla metodología específica que permite la caracterización de sistemas de transmisión acústicos basados en el fenómeno del array paramétrico. Este tipo de estructuras es considerado como uno de los sistemas más representativos de la acústica no lineal con amplias posibilidades tecnológicas. Los arrays paramétricos aprovechan la no linealidad del medio aéreo para obtener en recepción señales en el margen sónico a partir de señales ultrasónicas en emisión. Por desgracia, este procedimiento implica que la señal transmitida y la recibida guardan una relación compleja, que incluye una fuerte ecualización así como una distorsión apreciable por el oyente. Este hecho reduce claramente la posibilidad de obtener sistemas acústicos de gran fidelidad. Hasta ahora, los esfuerzos tecnológicos dirigidos al diseño de sistemas comerciales han tratado de paliar esta falta de fidelidad mediante técnicas de preprocesado fuertemente dependientes de los modelos físicos teóricos. Estos están basados en la ecuación de propagación de onda no lineal. En esta Tesis se propone un nuevo enfoque: la obtención de una representación completa del sistema mediante series de Volterra que permita inferir un sistema de compensación computacionalmente ligero y fiable. La dificultad que entraña la correcta extracción de esta representación obliga a desarrollar una metodología completa de identificación adaptada a este tipo de estructuras. Así, a la hora de aplicar métodos de identificación se hace indispensable la determinación de ciertas características iniciales que favorezcan la parametrización del sistema. En esta Tesis se propone una metodología propia que extrae estas condiciones iniciales. Con estos datos, nos encontramos en disposición de plantear un sistema completo de identificación no lineal basado en señales pseudoaleatorias, que aumenta la fiabilidad de la descripción del sistema, posibilitando tanto la inferencia de la estructura basada en bloques subyacente, como el diseño de mecanismos de compensación adecuados. A su vez, en este escenario concreto en el que intervienen procesos de modulación, factores como el punto de trabajo o las características físicas del transductor, hacen inviables los algoritmos de caracterización habituales. Incluyendo el método de identificación propuesto. Con el fin de eliminar esta problemática se propone una serie de nuevos algoritmos de corrección que permiten la aplicación de la caracterización. Las capacidades de estos nuevos algoritmos se pondrán a prueba sobre un prototipo físico, diseñado a tal efecto. Para ello, se propondrán la metodología y los mecanismos de instrumentación necesarios para llevar a cabo el diseño, la identificación del sistema y su posible corrección, todo ello mediante técnicas de procesado digital previas al sistema de transducción. Los algoritmos se evaluarán en términos de error de modelado a partir de la señal de salida del sistema real frente a la salida sintetizada a partir del modelo estimado. Esta estrategia asegura la posibilidad de aplicar técnicas de compensación ya que éstas son sensibles a errores de estima en módulo y fase. La calidad del sistema final se evaluará en términos de fase, coloración y distorsión no lineal mediante un test propuesto a lo largo de este discurso, como paso previo a una futura evaluación subjetiva. ABSTRACT This Thesis presents a specific methodology for the characterization of acoustic transmission systems based on the parametric array phenomenon. These structures are well-known representatives of the nonlinear acoustics field and display large technological opportunities. Parametric arrays exploit the nonlinear behavior of air to obtain sonic signals at the receptors’side, which were generated within the ultrasonic range. The underlying physical process redunds in a complex relationship between the transmitted and received signals. This includes both a strong equalization and an appreciable distortion for a human listener. High fidelity, acoustic equipment based on this phenomenon is therefore difficult to design. Until recently, efforts devoted to this enterprise have focused in fidelity enhancement based on physically-informed, pre-processing schemes. These derive directly from the nonlinear form of the wave equation. However, online limited enhancement has been achieved. In this Thesis we propose a novel approach: the evaluation of a complete representation of the system through its projection onto the Volterra series, which allows the posterior inference of a computationally light and reliable compensation scheme. The main difficulty in the derivation of such representation strives from the need of a complete identification methodology, suitable for this particular type of structures. As an example, whenever identification techniques are involved, we require preliminary estimates on certain parameters that contribute to the correct parameterization of the system. In this Thesis we propose a methodology to derive such initial values from simple measures. Once these information is made available, a complete identification scheme is required for nonlinear systems based on pseudorandom signals. These contribute to the robustness and fidelity of the resulting model, and facilitate both the inference of the underlying structure, which we subdivide into a simple block-oriented construction, and the design of the corresponding compensation structure. In a scenario such as this where frequency modulations occur, one must control exogenous factors such as devices’ operation point and the physical properties of the transducer. These may conflict with the principia behind the standard identification procedures, as it is the case. With this idea in mind, the Thesis includes a series of novel correction algorithms that facilitate the application of the characterization results onto the system compensation. The proposed algorithms are tested on a prototype that was designed and built for this purpose. The methodology and instrumentation required for its design, the identification of the overall acoustic system and its correction are all based on signal processing techniques, focusing on the system front-end, i.e. prior to transduction. Results are evaluated in terms of input-output modelling error, considering a synthetic construction of the system. This criterion ensures that compensation techniques may actually be introduced, since these are highly sensible to estimation errors both on the envelope and the phase of the signals involved. Finally, the quality of the overall system will be evaluated in terms of phase, spectral color and nonlinear distortion; by means of a test protocol specifically devised for this Thesis, as a prior step for a future, subjective quality evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the telecommunications industry evolves over the next decade to provide the products and services that people will desire, several key technologies will become commonplace. Two of these, automatic speech recognition and text-to-speech synthesis, will provide users with more freedom on when, where, and how they access information. While these technologies are currently in their infancy, their capabilities are rapidly increasing and their deployment in today's telephone network is expanding. The economic impact of just one application, the automation of operator services, is well over $100 million per year. Yet there still are many technical challenges that must be resolved before these technologies can be deployed ubiquitously in products and services throughout the worldwide telephone network. These challenges include: (i) High level of accuracy. The technology must be perceived by the user as highly accurate, robust, and reliable. (ii) Easy to use. Speech is only one of several possible input/output modalities for conveying information between a human and a machine, much like a computer terminal or Touch-Tone pad on a telephone. It is not the final product. Therefore, speech technologies must be hidden from the user. That is, the burden of using the technology must be on the technology itself. (iii) Quick prototyping and development of new products and services. The technology must support the creation of new products and services based on speech in an efficient and timely fashion. In this paper I present a vision of the voice-processing industry with a focus on the areas with the broadest base of user penetration: speech recognition, text-to-speech synthesis, natural language processing, and speaker recognition technologies. The current and future applications of these technologies in the telecommunications industry will be examined in terms of their strengths, limitations, and the degree to which user needs have been or have yet to be met. Although noteworthy gains have been made in areas with potentially small user bases and in the more mature speech-coding technologies, these subjects are outside the scope of this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Railroad Administration, Office of Safety, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"C00-2118-0005" (v. 1)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Second language acquisition is a field that has fascinated linguists for numerous years and is a topic that is very much connected to how English teachers in Sweden try to teach the English language to the students in their classrooms. In 2009 Sundqvist examined what possible effects extramural English could have on learners' oral proficiency and their vocabulary. In her study she found out that extramural English “is an independent variable and a possible path to progress in English” (Sundqvist, 2009, p. i).  In 2014, three Swedish secondary- and upper secondary school teachers started a project for the Erasmus+. These three teachers tried to create better teaching conditions and to come up with new methods for teaching English. During their investigation they noticed that students who had only been in Sweden for four years or less, seemed to get less exposed to English in their spare time than native Swedish students, which created a disadvantage for them. Since the time when these two studies were carried out, the number of immigrants has increased drastically, which creates the need for further investigation within this area of second language acquisition. In this study, I therefore investigate how much and in what way students come in contact with the English language outside of school. I also examine if there are any differences between native Swedish students versus non-native Swedish students and if so, how this might affect the students and their grades in English. The study was conducted through the use of questionnaires and through observations of different teaching situations, including the participating teachers' methods and the participating students' reactions. The results show that there are differences between native- and non-native students when it comes to extramural English activities. The results also show that these differences seem to affect the students' grades in English, in favour of the native Swedish students. The native students tend to spend more time on extramural English activities, especially in connection to the Internet and computer games, than the non-native students. These results indicate that something needs to be done in order to compensate for the non-native students' disadvantage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raf-MEK-ERK MAP kinase cascade transmits signals from activated receptors into the cell to regulate proliferation and differentiation. The cascade is controlled by the Ras GTPase, which recruits Raf from the cytosol to the plasma membrane for activation. In turn, MEK, ERK, and scaffold proteins translocate to the plasma membrane for activation. Here, we examine the input-output properties of the Raf-MEK-ERK MAP kinase module in mammalian cells activated in different cellular contexts. We show that the MAP kinase module operates as a molecular switch in vivo but that the input sensitivity of the module is determined by subcellular location. Signal output from the module is sensitive to low-level input only when it is activated at the plasma membrane. This is because the threshold for activation is low at the plasma membrane, whereas the threshold for activation is high in the cytosol. Thus, the circuit configuration of the module at the plasma membrane generates maximal outputs from low-level analog inputs, allowing cells to process and respond appropriately to physiological stimuli. These results reveal the engineering logic behind the recruitment of elements of the module from the cytosol to the membrane for activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information security devices must preserve security properties even in the presence of faults. This in turn requires a rigorous evaluation of the system behaviours resulting from component failures, especially how such failures affect information flow. We introduce a compositional method of static analysis for fail-secure behaviour. Our method uses reachability matrices to identify potentially undesirable information flows based on the fault modes of the system's components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic communications devices intended for government or military applications must be rigorously evaluated to ensure that they maintain data confidentiality. High-grade information security evaluations require a detailed analysis of the device's design, to determine how it achieves necessary security functions. In practice, such evaluations are labour-intensive and costly, so there is a strong incentive to find ways to make the process more efficient. In this paper we show how well-known concepts from graph theory can be applied to a device's design to optimise information security evaluations. In particular, we use end-to-end graph traversals to eliminate components that do not need to be evaluated at all, and minimal cutsets to identify the smallest group of components that needs to be evaluated in depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hazard and operability (HAZOP) studies on chemical process plants are very time consuming, and often tedious, tasks. The requirement for HAZOP studies is that a team of experts systematically analyse every conceivable process deviation, identifying possible causes and any hazards that may result. The systematic nature of the task, and the fact that some team members may be unoccupied for much of the time, can lead to tedium, which in turn may lead to serious errors or omissions. An aid to HAZOP are fault trees, which present the system failure logic graphically such that the study team can readily assimilate their findings. Fault trees are also useful to the identification of design weaknesses, and may additionally be used to estimate the likelihood of hazardous events occurring. The one drawback of fault trees is that they are difficult to generate by hand. This is because of the sheer size and complexity of modern process plants. The work in this thesis proposed a computer-based method to aid the development of fault trees for chemical process plants. The aim is to produce concise, structured fault trees that are easy for analysts to understand. Standard plant input-output equation models for major process units are modified such that they include ancillary units and pipework. This results in a reduction in the nodes required to represent a plant. Control loops and protective systems are modelled as operators which act on process variables. This modelling maintains the functionality of loops, making fault tree generation easier and improving the structure of the fault trees produced. A method, called event ordering, is proposed which allows the magnitude of deviations of controlled or measured variables to be defined in terms of the control loops and protective systems with which they are associated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If we classify variables in a program into various security levels, then a secure information flow analysis aims to verify statically that information in a program can flow only in ways consistent with the specified security levels. One well-studied approach is to formulate the rules of the secure information flow analysis as a type system. A major trend of recent research focuses on how to accommodate various sophisticated modern language features. However, this approach often leads to overly complicated and restrictive type systems, making them unfit for practical use. Also, problems essential to practical use, such as type inference and error reporting, have received little attention. This dissertation identified and solved major theoretical and practical hurdles to the application of secure information flow. ^ We adopted a minimalist approach to designing our language to ensure a simple lenient type system. We started out with a small simple imperative language and only added features that we deemed most important for practical use. One language feature we addressed is arrays. Due to the various leaking channels associated with array operations, arrays have received complicated and restrictive typing rules in other secure languages. We presented a novel approach for lenient array operations, which lead to simple and lenient typing of arrays. ^ Type inference is necessary because usually a user is only concerned with the security types for input/output variables of a program and would like to have all types for auxiliary variables inferred automatically. We presented a type inference algorithm B and proved its soundness and completeness. Moreover, algorithm B stays close to the program and the type system and therefore facilitates informative error reporting that is generated in a cascading fashion. Algorithm B and error reporting have been implemented and tested. ^ Lastly, we presented a novel framework for developing applications that ensure user information privacy. In this framework, core computations are defined as code modules that involve input/output data from multiple parties. Incrementally, secure flow policies are refined based on feedback from the type checking/inference. Core computations only interact with code modules from involved parties through well-defined interfaces. All code modules are digitally signed to ensure their authenticity and integrity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary purpose of this thesis was to present a theoretical large-signal analysis to study the power gain and efficiency of a microwave power amplifier for LS-band communications using software simulation. Power gain, efficiency, reliability, and stability are important characteristics in the power amplifier design process. These characteristics affect advance wireless systems, which require low-cost device amplification without sacrificing system performance. Large-signal modeling and input and output matching components are used for this thesis. Motorola's Electro Thermal LDMOS model is a new transistor model that includes self-heating affects and is capable of small-large signal simulations. It allows for most of the design considerations to be on stability, power gain, bandwidth, and DC requirements. The matching technique allows for the gain to be maximized at a specific target frequency. Calculations and simulations for the microwave power amplifier design were performed using Matlab and Microwave Office respectively. Microwave Office is the simulation software used in this thesis. The study demonstrated that Motorola's Electro Thermal LDMOS transistor in microwave power amplifier design process is a viable solution for common-source amplifier applications in high power base stations. The MET-LDMOS met the stability requirements for the specified frequency range without a stability-improvement model. The power gain of the amplifier circuit was improved through proper microwave matching design using input/output-matching techniques. The gain and efficiency of the amplifier improve approximately 4dB and 7.27% respectively. The gain value is roughly .89 dB higher than the maximum gain specified by the MRF21010 data sheet specifications. This work can lead to efficient modeling and development of high power LDMOS transistor implementations in commercial and industry applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural language processing has achieved great success in a wide range of ap- plications, producing both commercial language services and open-source language tools. However, most methods take a static or batch approach, assuming that the model has all information it needs and makes a one-time prediction. In this disser- tation, we study dynamic problems where the input comes in a sequence instead of all at once, and the output must be produced while the input is arriving. In these problems, predictions are often made based only on partial information. We see this dynamic setting in many real-time, interactive applications. These problems usually involve a trade-off between the amount of input received (cost) and the quality of the output prediction (accuracy). Therefore, the evaluation considers both objectives (e.g., plotting a Pareto curve). Our goal is to develop a formal understanding of sequential prediction and decision-making problems in natural language processing and to propose efficient solutions. Toward this end, we present meta-algorithms that take an existent batch model and produce a dynamic model to handle sequential inputs and outputs. Webuild our framework upon theories of Markov Decision Process (MDP), which allows learning to trade off competing objectives in a principled way. The main machine learning techniques we use are from imitation learning and reinforcement learning, and we advance current techniques to tackle problems arising in our settings. We evaluate our algorithm on a variety of applications, including dependency parsing, machine translation, and question answering. We show that our approach achieves a better cost-accuracy trade-off than the batch approach and heuristic-based decision- making approaches. We first propose a general framework for cost-sensitive prediction, where dif- ferent parts of the input come at different costs. We formulate a decision-making process that selects pieces of the input sequentially, and the selection is adaptive to each instance. Our approach is evaluated on both standard classification tasks and a structured prediction task (dependency parsing). We show that it achieves similar prediction quality to methods that use all input, while inducing a much smaller cost. Next, we extend the framework to problems where the input is revealed incremen- tally in a fixed order. We study two applications: simultaneous machine translation and quiz bowl (incremental text classification). We discuss challenges in this set- ting and show that adding domain knowledge eases the decision-making problem. A central theme throughout the chapters is an MDP formulation of a challenging problem with sequential input/output and trade-off decisions, accompanied by a learning algorithm that solves the MDP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scope of this study is to design an automatic control system and create an automatic x-wire calibrator for a facility named Plane Air Tunnel; whose exit creates planar jet flow. The controlling power state as well as automatic speed adjustment of the inverter has been achieved. Thus, the wind tunnel can be run with respect to any desired speed and the x-wire can automatically be calibrated at that speed. To achieve that, VI programming using the LabView environment was learned, to acquire the pressure and temperature, and to calculate the velocity based on the acquisition data thanks to a pitot-static tube. Furthermore, communication with the inverter to give the commands for power on/off and speed control was also done using the LabView VI coding environment. The connection of the computer to the inverter was achieved by the proper cabling using DAQmx Analog/Digital (A/D) input/output (I/O). Moreover, the pressure profile along the streamwise direction of the plane air tunnel was studied. Pressure tappings and a multichannel pressure scanner were used to acquire the pressure values at different locations. Thanks to that, the aerodynamic efficiency of the contraction ratio was observed, and the pressure behavior was related to the velocity at the exit section. Furthermore, the control of the speed was accomplished by implementing a closed-loop PI controller on the LabView environment with and without using a pitot-static tube thanks to the pressure behavior information. The responses of the two controllers were analyzed and commented on by giving suggestions. In addition, hot wire experiments were performed to calibrate automatically and investigate the velocity profile of a turbulent planar jet. To be able to analyze the results, the physics of turbulent planar jet flow was studied. The fundamental terms, the methods used in the derivation of the equations, velocity profile, shear stress behavior, and the effect of vorticity were reviewed.