925 resultados para Combined
Resumo:
Cardiovascular diseases are nowadays the first cause of mortality worldwide, causing around the 30% of global deaths each year. The risk of suffering from cardiovascular illnesses is strongly related to some factors such as hypertension, high cholesterol levels, diabetes, obesity The combination of these different risk factors is known as metabolic syndrome and it is considered a pandemic due to the high prevalence worldwide. The pathology of the disorders implies a combined cardiovascular therapy with drugs which have different targets and mechanisms of action, to regulate each factor separately. The simultaneous analysis of these drugs turns interesting but it is a complex task since the determination of multiple substances with different physicochemical properties and physiological behavior is always a challenge for the analytical chemist. The complexity of the biological matrices and the difference in the expected concentrations of some analytes require the development of extremely sensitive and selective determination methods. The aim of this work is to fill the gap existing in this field of the drug analysis, developing analytical methods capable of quantifying the different drugs prescribed in combined cardiovascular therapy simultaneously. Liquid chromatography andem mass spectrometry (LCMS/MS) has been the technique of choice throughout the main part of this work, due to the high sensitivity and selectivity requirements.
Resumo:
The divergence of properties from one location to another within a soil mass is termed spatial variability, which traditionally includes three parameters the mean, the standard deviation, and the scale of fluctuation, in order to stochastically describe a soil property. Among them, determining the scale of fluctuation in the evaluation of spatial variability of soil profiles is not easy due to soil condition complexity. A simplified procedure is presented in the paper to determine the scale of fluctuation combined recurrence averaging and weighted linear regression. The alternative approach utilizes widely usable spreadsheet to solve the problem more directly and efficiently.
Resumo:
[ENG]Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs
Resumo:
Chromosome territories constitute the most conspicuous feature of nuclear architecture, and they exhibit non-random distribution patterns in the interphase nucleus. We observed that in cell nuclei from humans with Down Syndrome two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. To systematically investigate whether the proximally positioned chromosomes were always the same in all cells, we developed an approach consisting of sequential FISH and CISH combined with laser-microdissection of chromosomes from the interphase nucleus and followed by subsequent chromosome identification by microsatellite allele genotyping. This approach identified proximally positioned chromosomes from cultured cells, and the analysis showed that the identity of the chromosomes proximally positioned varies. However, the data suggest that there may be a tendency of the same chromosomes to be positioned close to each other in the interphase nucleus of trisomic cells. The protocol described here represents a powerful new method for genome analysis
Resumo:
Knowledge Exchange hosted a workshop in March 2010 with the aim to bring together technical experts working in partner projects collecting usage statistics including PIRUS2, OAstatistik and SURFsure projects. Experts from other related projects (RePec and NeeO) were also involved. The workshop produced a briefing paper on combined usage statistics as a basis for research intelligence. In this paper, the experts make a cause for collecting and exchanging usage statistics as this can provide valuable insight in how research is being used, not only by the research community, but also by business and society in general. This would provide a basis for 'Research Intelligence', an intelligent use of reliable numerical data which can be used as a basis for decision making in higher education and research. Usage statistics are a clear example of data which can offer a valuable contribution to the information required to make informed decisions. To allow for the meaningful collection, exchange and analysis of usage statistics, a number of challenges and opportunities need to be addressed and further steps need to be taken.
Resumo:
Transcription factor binding sites (TFBS) play key roles in genebior 6.8 wavelet expression and regulation. They are short sequence segments with de¯nite structure and can be recognized by the corresponding transcription factors correctly. From the viewpoint of statistics, the candidates of TFBS should be quite di®erent from the segments that are randomly combined together by nucleotide. This paper proposes a combined statistical model for ¯nding over- represented short sequence segments in di®erent kinds of data set. While the over-represented short sequence segment is described by position weight matrix, the nucleotide distribution at most sites of the segment should be far from the background nucleotide distribution. The central idea of this approach is to search for such kind of signals. This algorithm is tested on 3 data sets, including binding sites data set of cyclic AMP receptor protein in E.coli, PlantProm DB which is a non-redundant collection of proximal promoter sequences from di®erent species, collection of the intergenic sequences of the whole genome of E.Coli. Even though the complexity of these three data sets is quite di®erent, the results show that this model is rather general and sensible.
Resumo:
The coupling mechanisms and flow characteristics of thermocapillary convection in a thin liquid layer with evaporating interface were studied. The planar liquid layer, with the upper surface open to air, was imposed externally horizontal temperature differences. The measured average evaporating rates and interfacial temperature profiles indicated the relative importance of evaporation effect and thermocapillary convection under different temperature gradients. A temperature jump was found at the interface, which was thought to be related to the influence of evaporation effect. All above mentioned results were repeated in a rarely evaporating liquid to compare the influence of evaporation effect.
Resumo:
High-order harmonics and single attosecond pulse generation by using an infrared laser pulse combined with attosecond pulse trains (APT) interacting with He+ have been investigated. We show that the ionization for different instant time intervals can be controlled by altering the time delay between the APT and the infrared pulse. Consequently, APT can be used as a tool to control the efficiency of high-order harmonics emitted at different times. By choosing appropriate APT and time delay, the driving pulse width for single attosecond pulse generation can be extended up to six optical cycles. (c) 2007 Optical Society of America.