951 resultados para Coherence-domain Imaging
Resumo:
Spectral domain optical coherence tomography (SD-OCT) in patients can deliver retinal cross-sectional images with high resolution. This may allow the evaluation of the extent of damage to the retinal pigment epithelium (RPE) and the neurosensory retina after laser treatment. This article aims to investigate the value of SD-OCT in comparing laser lesions produced by conventional laser photocoagulation and selective retina treatment (SRT).
Resumo:
PURPOSE: To test the reproducibility of retinal thickness measurements in healthy volunteers of a new Frequency-domain optical coherence tomography (OCT) device (Spectralis OCT; Heidelberg Engineering, Heidelberg, Germany). DESIGN: Prospective, observational study. METHODS: Forty-one eyes of 41 healthy subjects were included into the study. Intraobserver reproducibility was tested with 20 x 15 degree raster scans consisting of 37 high-resolution line scans that were repeated three times by one examiner (M.N.M.). Mean retinal thickness was calculated for nine areas corresponding to the Early Treatment Diabetic Retinopathy Study (ETDRS) areas. Coefficients of variation (COV) were calculated. RESULTS: Retinal thickness measurements were highly reproducible for all ETDRS areas. Mean total retinal thickness was 342 +/- 15 microm. Mean foveal thickness was 286 +/- 17 microm. COVs ranged from 0.38% to 0.86%. Lowest COV was found for the temporal outer ETDRS area (area 7; COV, 0.38%). Highest COV was found for the temporal inner ETDRS area (area 3; COV, 0.86%). Mean difference between measurement 1 and 2, measurement 1 and 3, and measurement 2 and 3 for all ETDRS areas was 1.01 microm, 0.98 microm, and 0.99 microm, respectively. CONCLUSION: Spectralis OCT retinal thickness measurements in healthy volunteers showed excellent intraobserver reproducibility with virtually identical results between retinal thickness measurements performed by one operator.
Resumo:
Aims: To assess observations with multimodality imaging of the Absorb bioresorbable everolimus-eluting vascular scaffold performed in two consecutive cohorts of patients who were serially investigated either at 6 and 24 months or at 12 and 36 months. Methods and results: In the ABSORB multicentre single-arm trial, 45 patients (cohort B1) and 56 patients (cohort B2) underwent serial invasive imaging, specifically quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), radiofrequency backscattering (IVUS-VH) and optical coherence tomography (OCT). Between one and three years, late luminal loss remained unchanged (6 months: 0.19 mm, 1 year: 0.27 mm, 2 years: 0.27 mm, 3 years: 0.29 mm) and the in-segment angiographic restenosis rate for the entire cohort B (n=101) at three years was 6%. On IVUS, mean lumen, scaffold, plaque and vessel area showed enlargement up to two years. Mean lumen and scaffold area remained stable between two and three years whereas significant reduction in plaque behind the struts occurred with a trend toward adaptive restrictive remodelling of EEM. Hyperechogenicity of the vessel wall, a surrogate of the bioresorption process, decreased from 23.1% to 10.4% with a reduction of radiofrequency backscattering for dense calcium and necrotic core. At three years, the count of strut cores detected on OCT increased significantly, probably reflecting the dismantling of the scaffold; 98% of struts were covered. In the entire cohort B (n=101), the three-year major adverse cardiac event rate was 10.0% without any scaffold thrombosis. Conclusions: The current investigation demonstrated the dynamics of vessel wall changes after implantation of a bioresorbable scaffold, resulting at three years in stable luminal dimensions, a low restenosis rate and a low clinical major adverse cardiac events rate.
Resumo:
Aims: Angiographic evidence of edge dissections has been associated with a risk of early stent thrombosis. Optical coherence tomography (OCT) is a high-resolution technology detecting a greater number of edge dissections -particularly non-flow-limiting- compared to angiography. Their natural history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. Methods and results: Edge dissections were defined as disruptions of the luminal surface in the 5 mm segments proximal and distal to the stent, and categorised as flaps, cavities, double-lumen dissections or fissures. Qualitative and quantitative OCT analyses were performed every 0.5 mm at baseline and one year, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases. The median longitudinal dissection length was 2.9 mm (interquartile range [IQR] 1.6-4.2 mm), whereas the circumferential and axial extensions amounted to 1.2 mm (IQR: 0.9-1.7 mm) and 0.6 mm (IQR: 0.4-0.7 mm), respectively. Dissections extended into the media and adventitia in seven (33%) and four (20%) cases, respectively. Eighteen (82%) OCT-detected edge dissections were also evaluated with intravascular ultrasound which identified nine (50%) of these OCT-detected dissections. No stent thrombosis or target lesion revascularisation occurred up to one year. At follow-up, 20 (90%) edge dissections were completely healed on OCT. The two cases exhibiting persistent dissection had the longest flaps (2.81 mm and 2.42 mm) at baseline. Conclusions: OCT-detected edge dissections which are angiographically silent in the majority of cases are not associated with acute stent thrombosis or restenosis up to one-year follow-up.
Resumo:
PURPOSE Geographic atrophy (GA) is the end-stage manifestation of atrophic age-related macular degeneration (AMD). The disease progresses slowly over time, eventually causing loss of central vision. Its cause and pathomechanism are not fully known. Previous studies have suggested that vitreoretinal traction (VRT) may contribute to the progression of neovascular AMD. The aim of this study was to examine whether an association between changes at the vitreoretinal interface (VRI), in particular traction (VRT), and the characteristics and progression of GA in eyes with dry AMD can be established. DESIGN Clinic-based prospective cohort study. PARTICIPANTS A total of 97 patients (age range, 61-90 years; mean, 78.4 years) with GA secondary to dry AMD were enrolled. Patients exhibiting neovascular signs on fluorescein angiography in either eye were excluded. METHODS The VRI changes were examined using spectral-domain optical coherence tomography (SD-OCT). Characteristics of GA were examined using fundus autofluorescence (FAF) imaging. All imaging was performed using a Spectralis SLO+OCT device (Heidelberg Engineering, Heidelberg, Germany); GA area was measured using the Region Finder (Heidelberg Engineering) software native to the Spectralis platform. MAIN OUTCOME MEASURES Area and increase in area of GA. RESULTS A total of 97 eyes were examined. Vitreoretinal traction was found in 39 eyes (40%). The GA area at baseline was 6.65±5.64 mm(2) in eyes with VRT and 5.73±4.72 mm(2) in eyes with no VRT. The annual rate of progression of GA area progression was 2.99±0.66 mm(2) in eyes with VRT and 1.45±0.67mm(2) in eyes without VRT. Differences between groups in both parameters were statistically significant (n = 97 total number of eyes; P<0.001). Multiple regression analysis confirmed this finding (B = 0.714, P<0.001; F3,93 = 72.542, P<0.001; adjusted R(2) = 0.691) CONCLUSIONS: Our results indicate an association between VRT and an increased rate of progression of GA area in dry AMD. Monitoring VRT may contribute to an improved estimate of the prospective time of visual loss and to a better timing of emerging therapies in dry AMD.
Resumo:
K-feldspar (Kfs) from the Chain of Ponds Pluton (CPP) is the archetypal reference material, on which thermochronological modeling of Ar diffusion in discrete “domains” was founded. We re-examine the CPP Kfs using cathodoluminescence and back-scattered electron imaging, transmission electron microscopy, and electron probe microanalysis. 40Ar/39Ar stepwise heating experiments on different sieve fractions, and on handpicked and unpicked aliquots, are compared. Our results reproduce the staircase-shaped age spectrum and the Arrhenius trajectory of the literature sample, confirming that samples collected from the same locality have an identical Ar isotope record. Even the most pristine-looking Kfs from the CPP contains successive generations of secondary, metasomatic/retrograde mineral replacements that post-date magmatic crystallization. These chemically and chronologically distinct phases are responsible for its staircase-shaped age spectra, which are modified by handpicking. While genuine within-grain diffusion gradients are not ruled out by these data, this study demonstrates that the most important control on staircase-shaped age spectra is the simultaneous presence of heterochemical, diachronous post-magmatic mineral growth. At least five distinct mineral species were identified in the Kfs separate, three of which can be traced to external fluids interacting with the CPP in a chemically open system. Sieve fractions have size-shifted Arrhenius trajectories, negating the existence of the smallest “diffusion domains”. Heterochemical phases also play an important role in producing non-linear trajectories. In vacuo degassing rates recovered from Arrhenius plots are neither related to true Fick’s Law diffusion nor to the staircase shape of the age spectra. The CPP Kfs used to define the "diffusion domain" model demonstrates the predominance of metasomatic alteration by hydrothermal fluids and recrystallization in establishing the natural Ar distribution amongst different coexisting phases that gives rise to the staircase-shaped age spectrum. Microbeam imaging of textures is as essential for 40Ar-39Ar hygrochronology as it is for U-Pb geochronology.
Resumo:
Ex vivo porcine retina laser lesions applied with varying laser power (20 mW–2 W, 10 ms pulse, 196 lesions) are manually evaluated by microscopic and optical coherence tomography (OCT) visibility, as well as in histological sections immediately after the deposition of the laser energy. An optical coherence tomography system with 1.78 um axial resolution specifically developed to image thin retinal layers simultaneously to laser therapy is presented, and visibility thresholds of the laser lesions in OCT data and fundus imaging are compared. Optical coherence tomography scans are compared with histological sections to estimate the resolving power for small optical changes in the retinal layers, and real-time time-lapse scans during laser application are shown and analyzed quantitatively. Ultrahigh-resolution OCT inspection features a lesion visibility threshold 40–50 mW (17 reduction) lower than for visual inspection. With the new measurement system, 42 of the lesions that were invisible using state-of-the-art ophthalmoscopic methods could be detected.
Resumo:
BACKGROUND Quantitative light intensity analysis of the strut core by optical coherence tomography (OCT) may enable assessment of changes in the light reflectivity of the bioresorbable polymeric scaffold from polymer to provisional matrix and connective tissues, with full disappearance and integration of the scaffold into the vessel wall. The aim of this report was to describe the methodology and to apply it to serial human OCT images post procedure and at 6, 12, 24 and 36 months in the ABSORB cohort B trial. METHODS AND RESULTS In serial frequency-domain OCT pullbacks, corresponding struts at different time points were identified by 3-dimensional foldout view. The peak and median values of light intensity were measured in the strut core by dedicated software. A total of 303 corresponding struts were serially analyzed at 3 time points. In the sequential analysis, peak light intensity increased gradually in the first 24 months after implantation and reached a plateau (relative difference with respect to baseline [%Dif]: 61.4% at 12 months, 115.0% at 24 months, 110.7% at 36 months), while the median intensity kept increasing at 36 months (%Dif: 14.3% at 12 months, 75.0% at 24 months, 93.1% at 36 months). CONCLUSIONS Quantitative light intensity analysis by OCT was capable of detecting subtle changes in the bioresorbable strut appearance over time, and could be used to monitor the bioresorption and integration process of polylactide struts.
Resumo:
Pre-clinical studies using murine models are critical for understanding the pathophysiological mechanisms underlying immune-mediated disorders such as Eosinophilic esophagitis (EoE). In this study, an optical coherence tomography (OCT) system capable of providing three-dimensional images with axial and transverse resolutions of 5 µm and 10 µm, respectively, was utilized to obtain esophageal images from a murine model of EoE-like disease ex vivo. Structural changes in the esophagus of wild-type (Tslpr(+/+) ) and mutant (Tslpr(-/-) ) mice with EoE-like disease were quantitatively evaluated and food impaction sites in the esophagus of diseased mice were monitored using OCT. Here, the capability of OCT as a label-free imaging tool devoid of tissue-processing artifacts to effectively characterize murine EoE-like disease models has been demonstrated.
Resumo:
We assessed the feasibility and the procedural and long-term safety of intracoronary (i.c) imaging for documentary purposes with optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in patients with acute ST-elevation myocardial infarction (STEMI) undergoing primary PCI in the setting of IBIS-4 study. IBIS4 (NCT00962416) is a prospective cohort study conducted at five European centers including 103 STEMI patients who underwent serial three-vessel coronary imaging during primary PCI and at 13 months. The feasibility parameter was successful imaging, defined as the number of pullbacks suitable for analysis. Safety parameters included the frequency of peri-procedural complications, and major adverse cardiac events (MACE), a composite of cardiac death, myocardial infarction (MI) and any clinically-indicated revascularization at 2 years. Clinical outcomes were compared with the results from a cohort of 485 STEMI patients undergoing primary PCI without additional imaging. Imaging of the infarct-related artery at baseline (and follow-up) was successful in 92.2 % (96.6 %) of patients using OCT and in 93.2 % (95.5 %) using IVUS. Imaging of the non-infarct-related vessels was successful in 88.7 % (95.6 %) using OCT and in 90.5 % (93.3 %) using IVUS. Periprocedural complications occurred <2.0 % of OCT and none during IVUS. There were no differences throughout 2 years between the imaging and control group in terms of MACE (16.7 vs. 13.3 %, adjusted HR1.40, 95 % CI 0.77-2.52, p = 0.27). Multi-modality three-vessel i.c. imaging in STEMI patients undergoing primary PCI is consistent a high degree of success and can be performed safely without impact on cardiovascular events at long-term follow-up.
Resumo:
PURPOSE Fundus autofluorescence (AF) is characterized not only by its intensity or excitation and emission spectra but also by the lifetimes of the fluorophores. Fluorescence lifetime is influenced by the fluorophore's microenvironment and may provide information about the metabolic tissue state. We report quantitative and qualitative autofluorescence lifetime imaging of the ocular fundus in mice. METHODS A fluorescence lifetime imaging ophthalmoscope (FLIO) was used to measure fluorescence lifetimes of endogenous fluorophores in the murine retina. FLIO imaging was performed in 1-month-old C57BL/6, BALB/c, and C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. Measurements were repeated at monthly intervals over the course of 6 months. For correlation with structural changes, an optical coherence tomogram was acquired. RESULTS Fundus autofluorescence lifetime images were readily obtained in all mice. In the short spectral channel (498-560 nm), mean ± SEM AF lifetimes were 956 ± 15 picoseconds (ps) in C57BL/6; 801 ± 35 ps in BALB/c mice; and 882 ± 37 ps in C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. In the long spectral channel (560-720 nm), mean ± SEM AF lifetimes were 298 ± 14 ps in C57BL/6 mice, 241 ± 10 ps in BALB/c mice, and 288 ± 8 ps in C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. There was a general decrease in mean AF lifetimes with age. CONCLUSIONS Although fluorescence lifetime values differ among mouse strains, we found little variance within the groups. Fundus autofluorescence lifetime imaging in mice may provide additional information for understanding retinal disease processes and may facilitate monitoring of therapeutic effects in preclinical studies.
Resumo:
PURPOSE We assessed the effects of intravitreal anti-vascular endothelial growth factor (anti-VEGF) therapy on scleral architecture using spectral domain anterior segment optical coherence tomography (OCT). METHODS A total of 35 eyes of 35 patients treated with at least 30 intravitreal injections in one eye in the inferotemporal quadrant with ranibizumab or aflibercept and 10 or less intravitreal injections in the fellow eye attending the intravitreal injection clinic were included. Enhanced depth imaging anterior segment OCT was used to measure scleral thickness. For each eye the sclera was measured in four quadrants at 3 mm from the limbus. In addition axial eye length was measured in all subjects using partial coherence interferometry. RESULTS The mean number of intravitreal injections was 42 (range, 30-73) and 1.6 (range, 0-9) in the fellow eyes. In the study eyes with more than 30 injections the average scleral thickness in the inferotemporal quadrant was 568.4 μm (SD ± 66 μm) and 590.6 μm (SD ± 75 μm) in the fellow eyes with 10 or less injections (P = 0.003). The mean average scleral thickness in the other three quadrants (inferonasal, superotemporal, and superonasal) was 536.6 μm in the study eyes (SD ± 100 μm) and 545.2 μm (SD ± 109 μm) in the fellow eyes (P = 0.22). There was a borderline association of the total number of injections with scleral thickness change in the inferotemporal quadrant (r = 0.3, P = 0.052). CONCLUSIONS Intravitreal injections may lead to scleral changes when applied repeatedly in the same quadrant. Thus, alternating the injection site should be considered in patients requiring multiple intravitreal injections.
Resumo:
Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.
Resumo:
PURPOSE To assess intra- and subretinal fluid during the loading phase with intravitreal ranibizumab in exudative age-related macular degeneration and to quantify the accuracy of crosshair scan spectral-domain optical coherence tomography with regard to retinal fluid. METHODS This is a retrospective study of 31 treatment-naive patients who received 3 monthly intravitreal ranibizumab injections. Visual acuity and the presence of retinal fluid were assessed at each visit using volume and crosshair scan protocols. RESULTS Visual acuity improved and central retinal thickness decreased significantly during the loading phase. However, retinal fluid persisted in two thirds of the patients. The accuracy of the crosshair scan to detect fluid was 93%. CONCLUSIONS A substantial proportion of eyes had persistent fluid after 3 months of ranibizumab injections. However, visual improvement was independent of residual fluid. Message: Crosshair scans detect relevant collections of retinal fluid accurately and may be sufficient in daily clinical practice. © 2015 S. Karger AG, Basel.
Resumo:
PURPOSE Fluorescence lifetime imaging ophthalmoscopy is a technique to measure decay times of endogenous retinal fluorophores. The purpose of this study was to investigate fluorescence lifetimes in eyes with central and branch retinal artery occlusion. METHODS Twenty-four patients with central or branch retinal artery occlusion were included in this study. The contralateral unaffected fellow eye was used as control. Measurements were performed using a fluorescence lifetime imaging ophthalmoscope based on a HRA Spectralis system. Fluorescence excitation wavelength was 473 nm, and mean lifetimes were measured in a short (498-560 nm) and in a long (560-720 nm) spectral channel. Fluorescence lifetimes in the area of retinal artery occlusion were measured and compared to corresponding areas in contralateral unaffected eyes. Additionally, findings were correlated to optical coherence tomography measurements. RESULTS Retinal lifetime images of 24 patients with retinal artery occlusion were analyzed. Mean retinal fluorescence lifetimes were prolonged by 50% in the short and 20% in the long spectral channel in ischemic retinal areas up to 3 days after retinal artery occlusion compared to the contralateral unaffected eyes. In the postacute disease stage there was no difference between the lifetimes of affected areas and unaffected fellow eyes. CONCLUSIONS Retinal artery occlusion leads to significantly longer fluorescence lifetimes of the retina in the acute phase and may serve as a useful indicator for acute ischemic retinal damage.