998 resultados para Classical Receptive-field
Resumo:
We construct an Euler product from the Hecke eigenvalues of an automorphic form on a classical group and prove its analytic continuation to the whole complex plane when the group is a unitary group over a CM field and the eigenform is holomorphic. We also prove analytic continuation of an Eisenstein series on another unitary group, containing the group just mentioned defined with such an eigenform. As an application of our methods, we prove an explicit class number formula for a totally definite hermitian form over a CM field.
Resumo:
We study the outburst of the newly discovered X-ray transient 3XMMJ185246.6+003317, re-analyzing all available XMM-Newton observations of the source to perform a phase-coherent timing analysis, and derive updated values of the period and period derivative. We find the source rotating at P = 11.55871346(6) s (90% confidence level; at epoch MJD 54728.7) but no evidence for a period derivative in the seven months of outburst decay spanned by the observations. This translates to a 3σ upper limit for the period derivative of ˙ P <1.4×10−13 s s−1, which, assuming the classical magneto-dipolar braking model, gives a limit on the dipolar magnetic field of Bdip < 4.1×1013 G. The X-ray outburst and spectral characteristics of 3XMM J185246.6+003317 confirm its identification as a magnetar, but the magnetic field upper limit we derive defines it as the third “low-B” magnetar discovered in the past 3 yr, after SGR 0418+5729 and Swift J1822.3−1606. We have also obtained an upper limit to the quiescent luminosity (<4×1033 erg s−1), in line with the expectations for an old magnetar. The discovery of this new low field magnetar reaffirms the prediction of about one outburst per year from the hidden population of aged magnetars.
Resumo:
Mode of access: Internet.
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.
Resumo:
Equilibrium adsorption data of nitrogen on a series of nongraphitized carbon blacks and nonporous silica at 77 K were analyzed by means of classical density functional theory to determine the solid-fluid potential. The behavior of this potential profile at large distance is particularly considered. The analysis of nitrogen adsorption isotherms seems to indicate that the adsorption in the first molecular layer is localized and controlled mainly by short-range forces due to the surface roughness, crystalline defects, and functional groups. At distances larger than approximately 1.3-1.5 molecular diameters, the adsorption is nonlocalized and appears as a thickening of the adsorbed film with increasing bulk pressure in a relatively weak adsorption potential field. It has been found that the asymptotic decay of the potential obeys the power law with the exponent being -3 for carbon blacks and -4 for silica surface, which signifies that in the latter case the adsorption potential is mainly exerted by surface oxygen atoms. In all cases, the absolute value of the solid-fluid potential is much smaller than that predicted by the Lennard-Jones pair potential with commonly used solid-fluid molecular parameters. The effect of surface heterogeneity on the heat of adsorption is also discussed.
Resumo:
Purpose - This paper provides a deeper examination of the fundamentals of commonly-used techniques - such as coefficient alpha and factor analysis - in order to more strongly link the techniques used by marketing and social researchers to their underlying psychometric and statistical rationale. Design/methodology approach - A wide-ranging review and synthesis of psychometric and other measurement literature both within and outside the marketing field is used to illuminate and reconsider a number of misconceptions which seem to have evolved in marketing research. Findings - The research finds that marketing scholars have generally concentrated on reporting what are essentially arbitrary figures such as coefficient alpha, without fully understanding what these figures imply. It is argued that, if the link between theory and technique is not clearly understood, use of psychometric measure development tools actually runs the risk of detracting from the validity of the measures rather than enhancing it. Research limitations/implications - The focus on one stage of a particular form of measure development could be seen as rather specialised. The paper also runs the risk of increasing the amount of dogma surrounding measurement, which runs contrary to the spirit of this paper. Practical implications - This paper shows that researchers may need to spend more time interpreting measurement results. Rather than simply referring to precedence, one needs to understand the link between measurement theory and actual technique. Originality/value - This paper presents psychometric measurement and item analysis theory in easily understandable format, and offers an important set of conceptual tools for researchers in many fields. © Emerald Group Publishing Limited.
Resumo:
Over the full visual field, contrast sensitivity is fairly well described by a linear decline in log sensitivity as a function of eccentricity (expressed in grating cycles). However, many psychophysical studies of spatial visual function concentrate on the central ±4.5 deg (or so) of the visual field. As the details of the variation in sensitivity have not been well documented in this region we did so for small patches of target contrast at several spatial frequencies (0.7–4 c/deg), meridians (horizontal, vertical, and oblique), orientations (horizontal, vertical, and oblique), and eccentricities (0–18 cycles). To reduce the potential effects of stimulus uncertainty, circular markers surrounded the targets. Our analysis shows that the decline in binocular log sensitivity within the central visual field is bilinear: The initial decline is steep, whereas the later decline is shallow and much closer to the classical results. The bilinear decline was approximately symmetrical in the horizontal meridian and declined most steeply in the superior visual field. Further analyses showed our results to be scale-invariant and that this property could not be predicted from cone densities. We used the results from the cardinal meridians to radially interpolate an attenuation surface with the shape of a witch's hat that provided good predictions for the results from the oblique meridians. The witch's hat provides a convenient starting point from which to build models of contrast sensitivity, including those designed to investigate signal summation and neuronal convergence of the image contrast signal. Finally, we provide Matlab code for constructing the witch's hat.
Resumo:
Recent advances in our ability to watch the molecular and cellular processes of life in action-such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer-raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.
Resumo:
The computational mechanics approach has been applied to the orientational behavior of water molecules in a molecular dynamics simulated water–Na + system. The distinctively different statistical complexity of water molecules in the bulk and in the first solvation shell of the ion is demonstrated. It is shown that the molecules undergo more complex orientational motion when surrounded by other water molecules compared to those constrained by the electric field of the ion. However the spatial coordinates of the oxygen atom shows the opposite complexity behavior in that complexity is higher for the solvation shell molecules. New information about the dynamics of water molecules in the solvation shell is provided that is additional to that given by traditional methods of analysis.
Resumo:
2000 Mathematics Subject Classification: 11S31 12E15 12F10 12J20.
Resumo:
A quasigeostrophic model is developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasigeostrophic framework considered before since it takes into account the stratification within the surface mixed layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant stratification layers: a finite-thickness surface layer (or the mixed layer) and an infinitely deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive equation numerical simulation
Resumo:
The purpose of the present study was to investigate percentage body fat (%BF) differences in three Spanish dance disciplines and to compare skinfold and bioelectrical impedance predictions of body fat percentage in the same sample. Seventy-six female dancers, divided into three groups, Classical (n=23), Spanish (n=29) and Flamenco (n=24), were measured using skinfold measurements at four sites: triceps, subscapular, biceps and iliac crest, and whole body multi-frequency bioelectrical impedance (BIA). The skin-fold measures were used to predict body fat percentage via Durnin and Womersley's and Segal, Sun and Yannakoulia equations by BIA. Differences in percent fat mass between groups (Classical, Spanish and Flamenco) were tested by using repeated measures analysis (ANOVA). Also, Pearson's product-moment correlations were performed on the body fat percentage values obtained using both methods. In addition, Bland-Altman plots were used to assess agreement, between anthropometric and BIA methods. Repeated measures analysis of variance did not found differences in %BF between modalities (p<0.05). Fat percentage correlations ranged from r= 0.57 to r=0.97 (all, p<0.001). Bland-Altman analysis revealed differences between BIA Yannakoulia as a reference method with BIA Segal (-0.35 ± 2.32%, 95%CI: -0.89to 0.18, p=0.38), with BIA Sun (-0.73 ± 2.3%, 95%CI: -1.27 to -0.20, p=0.014) and Durnin-Womersley (-2.65 ± 2,48%, 95%CI: -3.22 to -2.07, p<0.0001). It was concluded that body fat percentage estimates by BIA compared with skinfold method were systematically different in young adult female ballet dancers, having a tendency to produce underestimations as %BF increased with Segal and Durnin-Womersley equations compared to Yannakoulia, concluding that these methods are not interchangeable.
Resumo:
With the theme of fracture of finite-strain plates and shells based on a phase-field model of crack regularization, we introduce a new staggered algorithm for elastic and elasto-plastic materials. To account for correct fracture behavior in bending, two independent phase-fields are used, corresponding to the lower and upper faces of the shell. This is shown to provide a realistic behavior in bending-dominated problems, here illustrated in classical beam and plate problems. Finite strain behavior for both elastic and elasto-plastic constitutive laws is made compatible with the phase-field model by use of a consistent updated-Lagrangian algorithm. To guarantee sufficient resolution in the definition of the crack paths, a local remeshing algorithm based on the phase- field values at the lower and upper shell faces is introduced. In this local remeshing algorithm, two stages are used: edge-based element subdivision and node repositioning. Five representative numerical examples are shown, consisting of a bi-clamped beam, two versions of a square plate, the Keesecker pressurized cylinder problem, the Hexcan problem and the Muscat-Fenech and Atkins plate. All problems were successfully solved and the proposed solution was found to be robust and efficient.
Resumo:
Despite the large applicability of the field capacity (FC) concept in hydrology and engineering, it presents various ambiguities and inconsistencies due to a lack of methodological procedure standardization. Experimental field and laboratory protocols taken from the literature were used in this study to determine the value of FC for different depths in 29 soil profiles, totaling 209 soil samples. The volumetric water content (θ) values were also determined at three suction values (6 kPa, 10 kPa, 33 kPa), along with bulk density (BD), texture (T) and organic matter content (OM). The protocols were devised based on the water processes involved in the FC concept aiming at minimizing hydraulic inconsistencies and procedural difficulty while maintaining the practical meaning of the concept. A high correlation between FC and θ(6 kPa) allowed the development of a pedotransfer function (Equation 3) quadratic for θ(6 kPa), resulting in an accurate and nearly bias-free calculation of FC for the four database geographic areas, with a global root mean squared residue (RMSR) of 0.026 m3·m-3. At the individual soil profile scale, the maximum RMSR was only 0.040 m3·m-3. The BD, T and OM data were generally of a low predicting quality regarding FC when not accompanied by the moisture variables. As all the FC values were obtained by the same experimental protocol and as the predicting quality of Equation 3 was clearly better than that of the classical method, which considers FC equal to θ(6), θ(10) or θ(33), we recommend using Equation 3 rather than the classical method, as well as the protocol presented here, to determine in-situ FC.
Resumo:
Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.