970 resultados para Civil engineering|Transportation planning
Resumo:
The Iowa Transportation Improvement Program (Program) is published to inform Iowans of planned investments in our state’s transportation system. The Iowa Transportation Commission (Commission) and Iowa Department of Transportation (Iowa DOT) are committed to programming those investments in a fiscally responsible manner. This document reflects Iowa’s multimodal transportation system by the inclusion of investments in aviation, transit, railroads, trails, and highways. A major component of this program is the highway section that documents programmed investments on the primary highway system for the next five years. A large part of funding available for highway programming comes from the federal government. Accurately estimating future federal funding levels is dependent on having a current enacted multi-year federal transportation authorization. The most recent authorization, Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU), expired September 30, 2009, and to date it has been extended seven times because a new authorization has not yet been enacted. The current extension will expire September 30, 2011. This leads to significant uncertainty in federal funding; however, it is becoming evident that, in Federal Fiscal Year 2012 and beyond, federal funding revenue will likely be reduced by 25 percent from current levels in order to match revenue that flows into the Highway Trust Fund. This Program reflects this anticipated reduction in federal funding. While Iowa law does not require the adoption of a Program when federal transportation funding is being reauthorized, the Commission believes it is important to adopt a Program in order to continue on-going planning and project development efforts so that Iowa will be well positioned when a new authorization is adopted. However, it is important to recognize that, absent a federal authorization bill, there is significant uncertainty in the forecast of federal revenues. The Commission and the Iowa DOT will continue to monitor federal revenues and will adjust future investments as needed to maintain a fiscally responsible Program. For 2012-2016, approximately $2.3 billion is forecast to be available for highway right of way and construction. In developing the highway section of the Program, the Commission’s primary investment objective remains stewardship (i.e. safety, maintenance and preservation) of Iowa’s existing highway system. Over $1.3 billion is programmed in FY2012 through FY2016 for preservation of Iowa’s existing highway system and for enhanced highway safety features. The highway section also includes significant interstate investments on I-29 in Sioux City, I-29/80/480 in Council Bluffs, and I-74 in Bettendorf/Davenport. The FY2016 programming for construction on I-74 in Bettendorf/Davenport is the first of several years of significant investments that will be monitored for available funding. Approximately $200 million of the investments on these three major urban interstate projects address preservation needs. In total, approximately $1.5 billion is programmed for highway preservation activities for 2012- 2016. Another highway programming objective is maintaining the scheduled completion of capacity and economic development projects. Projects that were previously scheduled to be completed within the previous Program continue on their current schedule. However, due to the reduction of projected federal revenues, the Commission has delayed by one year the initiation of construction of all multi-year non-Interstate capacity and economic development projects that cannot be completed within this Program. These projects are U.S. 20 in Woodbury County, U.S. 30 in Benton County, U.S. 61 in Louisa County, and Iowa 100 in Linn County. The Iowa DOT and Commission appreciate the public’s involvement in the state’s transportation planning process. Comments received personally, by letter or through participation in the Commission’s regular meetings or public input meetings held around the state each year, are invaluable in providing guidance for the future of Iowa’s transportation system. It should be noted that this document is a planning guide. It does not represent a binding commitment or obligation of the Commission or Iowa DOT, and is subject to change.
Resumo:
A previous study sponsored by the Smart Work Zone Deployment Initiative, “Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility,” demonstrated the feasibility of combining readily available, inexpensive software programs, such as SketchUp and Google Earth, with standard two-dimensional civil engineering design programs, such as MicroStation, to create animations of construction work zones. The animations reflect changes in work zone configurations as the project progresses, representing an opportunity to visually present complex information to drivers, construction workers, agency personnel, and the general public. The purpose of this study is to continue the work from the previous study to determine the added value and resource demands created by including more complex data, specifically traffic volume, movement, and vehicle type. This report describes the changes that were made to the simulation, including incorporating additional data and converting the simulation from a desktop application to a web application.
Resumo:
In 1994 the Iowa Department of Transportation constructed a 7.2-mile Portland Cement Concrete overlay project in Iowa County on Iowa Highway 21. The research work was conducted in cooperation with the Department of Civil Engineering and the Federal Highway Administration under the Iowa Highway Research Board project HR-559. The project was constructed to evaluate the performance of an ultrathin concrete overlay during a 5-year period. The experiment included variables of base surface preparation, overlay depth, joint spacing, fiber reinforcement, and the sealed or non-sealed joints. The project was instrumented to measure overlay/base interface temperatures and strains. Visual distress surveys and deflection testing were also used to monitor performance. Coring and direct shear testing was accomplished 3 times during the research period. Results of the testing and monitoring are identified in the report. The experiment was very successful and the results provide an insight into construction and design needs to be considered in tailoring a portland cement concrete overlay to a performance need. The results also indicate a method to monitor bond with nondestructive methods.
Resumo:
The purpose of performance measures in planning operations is to identify and track meaningful, quantifiable measures that reflect progress toward the goals of the plan. The Iowa Department of Transportation (DOT) has already adopted performance measures in a number of operational areas, including highway maintenance, highway safety, public transportation, and aeronautics. This report is an initial effort to utilize performance measures for transportation system planning. The selected measures provide a cross-section of system performance indicators across three selected transportation planning goals (safety, efficiency, and quality of life) and five transportation modes (highways/bridges, public transit, railroads, aviation, and pedestrian/bicycle). These performance measures are exploratory in nature, and constitute a first attempt to apply performance measures in the context of a statewide, multimodal transportation plan from the Iowa DOT. As such, the set of performance measures that the Iowa DOT uses for planning will change over time as more is learned about the application of such measures. The performance measures explained in this document were developed through consultation with Iowa DOT modal staff (aviation, railroads, highways, public transportation, and pedestrian/bicycle) and the Office of Traffic and Safety. In addition, faculty and staff at the Iowa State University Center for Transportation Research and Education were consulted about performance measurement and data within their areas of expertise.
Resumo:
The research of condition monitoring of electric motors has been wide for several decades. The research and development at universities and in industry has provided means for the predictive condition monitoring. Many different devices and systems are developed and are widely used in industry, transportation and in civil engineering. In addition, many methods are developed and reported in scientific arenas in order to improve existing methods for the automatic analysis of faults. The methods, however, are not widely used as a part of condition monitoring systems. The main reasons are, firstly, that many methods are presented in scientific papers but their performance in different conditions is not evaluated, secondly, the methods include parameters that are so case specific that the implementation of a systemusing such methods would be far from straightforward. In this thesis, some of these methods are evaluated theoretically and tested with simulations and with a drive in a laboratory. A new automatic analysis method for the bearing fault detection is introduced. In the first part of this work the generation of the bearing fault originating signal is explained and its influence into the stator current is concerned with qualitative and quantitative estimation. The verification of the feasibility of the stator current measurement as a bearing fault indicatoris experimentally tested with the running 15 kW induction motor. The second part of this work concentrates on the bearing fault analysis using the vibration measurement signal. The performance of the micromachined silicon accelerometer chip in conjunction with the envelope spectrum analysis of the cyclic bearing faultis experimentally tested. Furthermore, different methods for the creation of feature extractors for the bearing fault classification are researched and an automatic fault classifier using multivariate statistical discrimination and fuzzy logic is introduced. It is often important that the on-line condition monitoring system is integrated with the industrial communications infrastructure. Two types of a sensor solutions are tested in the thesis: the first one is a sensor withcalculation capacity for example for the production of the envelope spectra; the other one can collect the measurement data in memory and another device can read the data via field bus. The data communications requirements highly depend onthe type of the sensor solution selected. If the data is already analysed in the sensor the data communications are needed only for the results but in the other case, all measurement data need to be transferred. The complexity of the classification method can be great if the data is analysed at the management level computer, but if the analysis is made in sensor itself, the analyses must be simple due to the restricted calculation and memory capacity.
Resumo:
Diplomityön tavoitteena oli kehittää Andritzin Kuitulinja-divisioonalle tunnuslukuja, työkaluja sekä menetelmiä projektin johdon jasuunnittelun eri osa-alueiden arviointiin, hinnoitteluun ja seurantaan Työn teoriaosuudessa käsiteltiin projektiliiketoimintaa, suunnitteluaja sen hankintaa, tunnuslukuja sekä mittaamista projektiympäristössä. Työn pääpaino oli kuitenkin empiriaosuudella, jossa aluksi tutustuttiin yksityiskohtaisesti työssä tutkittaviin osa-alueisiin. Tiedonkeruuvaiheessa kerättiin suuri määrätunnuslukujen laskemiseksi tarvittavaa tietoa toteutetuista tai vielä hieman keskeneräisistä projekteista. Työn kirjallinen osuus ja kerätty numeerinen tieto yhdistettiin tunnuslukujen analysointivaiheessa, jossa tutkittiin eri tunnuslukujen soveltuvuutta mittaamiseen. Tunnusluvut soveltuivat hyvin joidenkin osa-alueiden kuten prosessi- ja putkistosuunnittelun mittaamiseen. Joidenkin osa-alueiden, kuten rakennussuunnittelun mittaaminen tunnuslukujen avulla oli vaikeampaa tunnuslukujen suuresta hajonnasta johtuen. Eri osa-alueille saatiin kuitenkin määritettyä parhaat tunnusluvut, projektien luokitteluperusteet ja standardiarvot. Työn lopputuloksina saatiin päätavoitteena ollut tunnuslukumittaristo sekä mittaamisen yhtenäistämiseksi luotu tiedonkeruulomake. Mittaamisen tehostamiseksi ja kehittämiseksi tehtiin useita jatkotutkimus- ja kehitysehdotuksia. Lisäksi työssä esitettiin uusi menetelmä projektinohjauksen ja resurssisuunnittelun tueksi.
Resumo:
The constructional activities in the coastal belt of our country often demand deep foundations because of the poor engineering properties and the related problems arising from weak soil at shallow depths.The soil profile in coastal area often consists of very loose sandy soils extending to a depth of 3 to 4 m from the ground level underlain by clayey soils of medium consistency.The very low shearing resistance of the foundation bed causes local as well as punching shear failure.Hence structures built on these soils may suffer from excessive settlements.This type of soil profile is very common in coastal areas of Kerala,especially in Cochin. Further,the high water table and limited depth of the top sandy layer in these areas restrict the depth of foundation thereby further reducing the safe bearing capacity.
Resumo:
Este trabajo recopila literatura académica relevante sobre estrategias de entrada y metodologías para la toma de decisión sobre la contratación de servicios de Outsourcing para el caso de empresas que planean expandirse hacia mercados extranjeros. La manera en que una empresa planifica su entrada a un mercado extranjero, y realiza la consideración y evaluación de información relevante y el diseño de la estrategia, determina el éxito o no de la misma. De otro lado, las metodologías consideradas se concentran en el nivel estratégico de la pirámide organizacional. Se parte de métodos simples para llegar a aquellos basados en la Teoría de Decisión Multicriterio, tanto individuales como híbridos. Finalmente, se presenta la Dinámica de Sistemas como herramienta valiosa en el proceso, por cuanto puede combinarse con métodos multicriterio.
Resumo:
Desde la noción universal sobre la empresa como un sistema de interacción con un entorno determinado para alcanzar un objetivo, de manera planificada y en función de satisfacer las demandas de un mercado mediante la actividad económica, su viabilidad, sostenibilidad y crecimiento dependerán, por supuesto, de una serie de estrategias adecuadas no solo para tales fines, sino también para enfrentar diversidad de agentes endógenos y exógenos que puedan afectar el normal desempeño de su gestión. Estamos hablando de la importancia de la resiliencia organizacional y del Capital Psicológico. En un escenario tan impredecible como el de la economía mundial, donde la constante son los cambios en su comportamiento —unos propios de su dinámica e interdependencia, naturales de fenómenos como la globalización, y otros derivados de eventos disruptivos— hoy más que nunca es necesario implementar el modelo de la empresa resiliente, que es aquella entidad capaz de adaptarse y recuperarse frente a una perturbación. Al mismo tiempo, más allá de su tamaño, naturaleza u objeto social, es indispensable reconocer básicamente que toda organización está constituida por personas, lo cual implica la trascendencia que para su funcionamiento tiene el factor humano-dependiente, y por lo tanto se crea la necesidad de promover el Capital Psicológico y la resiliencia a nivel de las organizaciones a través de una cultura empresarial.
Diseño de un sistema de benchmarking de prácticas de recursos humanos en redes interorganizacionales
Resumo:
Hoy en día en el mundo empresarial, son cada vez más las compañías que forman parte de redes interorganizacionales, debido a que al hacer parte de estas se genera un apoyo mutuo entre organizaciones sin que ninguna de ellas imponga acciones a realizar sobre la otra (Sulbrandt, Lira, Ibarra, 2001). En años anteriores se han realizado diversas investigaciones acerca de redes interorganizacionales, estudiando factores económicos, financieros y de mercado, pero poco se ha estudiado acerca del campo de recursos humanos y sus prácticas. Es por esto que esta investigación busca describir, explicar, analizar, y comparar, entre otras actividades intelectuales, conceptos de redes interorganizacionales, prácticas de recursos humanos y benchmarking, para finalmente proponer el diseño de un sistema de benchmarking que logre reunir y evaluar las mejores prácticas de recursos humanos de cada empresa dentro de una red interorganizacional.
Resumo:
Los diferentes sectores de la economía ejercen múltiples actividades que impulsan el crecimiento socio-económico de los diferentes países, sin embargo dichas actividades tienen repercusiones importantes a nivel ambiental, dentro de las que se encuentran transformaciones irreversibles del planeta, tanto físicas como químicas. Gracias a esto, en la actualidad, las empresas y organizaciones han empezado a controlar con mayor responsabilidad sus respectivos procesos y operaciones, buscando no solo mitigar los impactos negativos ocasionados al medio ambiente y a la sociedad sino la optimización en el uso de recursos tanto físicos como económicos. El presente estudio tiene como finalidad analizar las operaciones que se realizan en una obra civil, con el fin de identificar cuáles son las principales causantes de contaminación, por otro lado se hará mención de como la normatividad y legislación colombiana aplica y ejerce control en cada uno de los mismos, finalmente se plantearán diferentes soluciones y alternativas para que dicha industria pueda implementarlas en sus quehaceres diarios. Para lograr lo anterior se utilizaron diferentes herramientas que facilitaron la obtención de datos e información para el estudio tales como: entrevistas a los miembros y participantes de la obra civil, visitas de campo, recopilación de información de estudios similares, realización de la matriz de aspectos e impactos y fichas ambientales, entre otras. Los resultados obtenidos permitieron entender que es inevitable que esta industria no genere ciertas contaminaciones e impactos negativos, además de identificar que la normativa del país en cuanto control ambiental se encuentra algo atrasada, factor que fue determinante a la hora de proponer distintas alternativas que buscan tanto facilitar las prácticas que el sector de la construcción tiene en el país como minimizar al máximo los impactos ambientales negativos ocasionados.
Resumo:
Purpose – For many academics in UK universities the nature and orientation of their research is overwhelmingly determined by considerations of how that work will be graded in research assessment exercises (RAEs). The grades awarded to work in a particular subject area can have a considerable impact on the individual and their university. There is a need to better understand those factors which may influence these grades. The paper seeks to address this issue. Design/methodology/approach – The paper considers relationships between the grades awarded and the quantitative information provided to the assessment panels for the 1996 and 2001 RAEs for two subject areas, built environment and town and country planning, and for three other subject areas, civil engineering, geography and archaeology, in the 2001 RAE. Findings – A simple model demonstrating strong and consistent relationships is established. RAE performance relates to numbers of research active staff, the production of books and journal papers, numbers of research studentships and graduations, and research income. Important differences between subject areas are identified. Research limitations/implications – Important issues are raised about the extent to which the new assessment methodology to be adopted for the 2008 RAE will capture the essence of good quality research in architecture and built environment. Originality/value – The findings provide a developmental perspective of RAEs and show how, despite a changed methodology, various research activities might be valued in the 2008 RAE. The basis for a methodology for reviewing the credibility of the judgements of panels is proposed.
Resumo:
Built environment programmes in West African universities; and research contributions from West Africa in six leading international journals and proceedings of the WABER conference are explored. At least 20 universities in the region offer degree programmes in Architecture (86% out of 23 universities); Building (57%); Civil Engineering (67%); Estate Management (52%); Quantity Surveying (52%); Surveying and Geoinformatics (55%); Urban and Regional Planning (67%). The lecturer-student ratio on programmes is around 1:25 compared to the 1:10 benchmark for excellence. Academics who teach on the programmes are clearly research active with some having published papers in leading international journals. There is, however, plenty of scope for improvement particularly at the highest international level. Out of more than 5000 papers published in six leading international peer-reviewed journals since each of them was established, only 23 of the papers have come from West Africa. The 23 papers are published by 28 academics based in 13 universities. Although some academics may publish their work in the plethora of journals that have proliferated in recent years, new generation researchers are encouraged to publish in more established journals. The analyses of 187 publications in the WABER conference proceedings revealed 18 research-active universities. Factors like quality of teaching, research and lecturer-student ratio, etc count in the ranking of universities. The findings lay bare some of the areas that should be addressed to improve the landscape of higher education in West Africa.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.