992 resultados para Cerebral-cortex
Resumo:
Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Antibodies were raised against specific peptides from N-terminal regions of the alpha (1) and alpha (3) isoforms of the GABA(A) receptor, and used to assess the relative expression of these proteins in the superior frontal and primary motor cortices of 10 control, nine uncomplicated alcoholic and six cirrhotic alcoholic cases were matched for age and post-mortem delay. The regression of expression on post-mortem delay was not statistically significant for either isoform in either region. In both cortical areas, the regression of a, expression on age differed significantly between alcoholic cases, which showed a decrease, and normal controls, which did not. Age had no effect on alpha (3) expression. The alpha (1) and alpha (3) isoforms were found to be expressed differentially across cortical regions and showed a tendency to be expressed differentially across case groups. In cirrhotic alcoholics, alpha (1) expression was greater in superior frontal than in motor cortex, whereas this regional difference was not significant in controls or uncomplicated alcoholics. In uncomplicated alcoholics, alpha (3) expression was significantly lower in superior frontal than in motor cortex. Expression of alpha (1) was significantly different from that Of alpha (3) in the superior frontal cortex of alcoholics, but not in controls. In motor cortex, there were no significant differences in expression between the isoforms in any case group.
Resumo:
We analyzed the expression profile of two NMDAR1 mRNA isoform subsets. NR1(0xx) and NR1(1xx), in discrete regions of human cerebral cortex. The subsets are characterized by the absence or presence of a 21-amino acid N-terminal cassette. Reverse transcription polymerase chain reaction for NR1 isoforms was performed on total RNA preparations from spared and susceptible regions from 10 pathologically confirmed Alzheimer's disease (AD) cases and 10 matched controls. Primers spanning the splice insert yielded two bands, 342 bp (NR1(0xx)) and 405 bp (NR1(1xx)), on agarose gel electrophoresis. The bands were visualized with ethidium and quantified by densitometry. NR1(1xx) transcript expression was calculated as a proportion of the NR1(1xx) + NR1(0xx) total. Values were significantly lower in AD cases than in controls in mid-cingulate cortex, p < 0.01, superior temporal cortex, p < 0.01 and hippocampus, p similar to 0.05. Cortical proportionate NR1(1xx) transcript expression was invariant over the range of ages acid areas of controls tested, at similar to 50%. This was also true for AD motor and occipital cortex. Proportionate NR1(1xx) expression in AD cingulate and temporal cortex was lower at younger ages and increased with age: this regression was significantly different from that in the homotropic areas of controls. Variations in NR1 N-terminal cassette expression may underlie the local vulnerability to excitotoxic damage of some areas in the AD brain. Alternatively, changes in NR1 mRNA expression may arise as a consequence of the AD disease process.
Resumo:
Here we present evidence that the pyramidal cell phenotype varies markedly in the cortex of different anthropoid species. Regional and species differences in the size of, number of bifurcations in, and spine density of the basal dendritic arbors cannot be explained by brain size. Instead, pyramidal cell morphology appears to accord with the specialized cortical function these cells perform. Cells in the prefrontal cortex of humans are more branched and more spinous than those in the temporal and occipital lobes. Moreover, cells in the prefrontal cortex of humans are more branched and more spinous than those in the prefrontal cortex of macaque and marmoset monkeys. These results suggest that highly spinous, compartmentalized, pyramidal cells (and the circuits they form) are required to perform complex cortical functions such as comprehension, perception, and planning.
Resumo:
Pyramidal neurones were injected with Lucifer Yellow in slices cut tangential to the surface of area 7m and the superior temporal polysensory area (STP) of the macaque monkey. Comparison of the basal dendritic arbors of supra- and infragranular pyramidal neurones (n=139) that were injected in the same putative modules in the different cortical areas revealed variation in their structure. Moreover, there were relative differences in dendritic morphology of supra- and infragranular pyramidal neurones in the two cortical areas. Shell analyses revealed that layer III pyramidal neurones in area STP had considerably higher peak complexity (maximum number of dendritic intersections per Shell circle) than those in layer V, whereas peak complexities were similar for supra- and infragranular pyramidal neurones in area 7m. In both cortical areas, the basal dendritic trees of layer m pyramidal neurones were characterized by a higher spine density than those in layer V. Calculations of the total number of dendritic spines in the average basal dendritic arbor revealed that layer V pyramidal neurones in area 7m had twice as many spines as cells in layer III. (4535 and 2294, respectively). A similar calculation for neurones in area STP revealed that layer III pyramidal neurones had approximately the same number of spines as cells in layer V (3585 and 3850 spines, respectively). Relative differences in the branching patterns of, and the number of spines in, the basal dendritic arbors of supra- and infragranular pyramidal neurones in the different cortical areas may allow for integration of different numbers of inputs, and different degrees of dendritic processing. These results support the thesis that intra-areal circuitry differs in different cortical areas.
Resumo:
The Australian Alfred Walter Campbell (1868-1937) is remembered as one of the two chief pioneers of the study of the cytoarchitectonics of the primate cerebral cortex. He had worked in Britain carrying out neuroanatomical and neuropathological research for almost two decades before his famous monograph on Histological Studies on the Localisation of Cerebral Function appeared in 1905. In that year he returned to his native Australia and practiced for over 30 years in Sydney as a neurologist rather than a neuropathologist, publishing mainly clinical material though he was involved in the investigation of the epidemic of Australian X disease, a viral encephalitis. His abrupt change in both the nature and the location of his career at a time when he was well established in Britain appears to have been a consequence of his marriage and the need to provide for a family. His simultaneous apparent abandonment of research seems not to have really been the case. As judged from the contents of a paper presented to a local medical congress in Sydney in 1911, it appears that, in Australia, Campbell did carry out a major comparative anatomical and histological investigation of the possibility of localization of function in the cerebellar cortex. He never published this work in detail. His investigation let him to conclude that no such localization of function existed, a view contrary to the then topical interpretation of Bolk (1906), but one in accordance with Gordon Holmes' views a decade later. Campbell's circumstances in Sydney, his extremely reticent nature and the essentially negative outcome of his investigation probably explain his failure to make his study more widely known.
Resumo:
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are important regulators of axon guidance and cell migration in the developing nervous system. Inactivation of the EphA4 gene results in axon guidance defects of the corticospinal tract, a major descending motor pathway that originates in the cortex and terminates at all levels of the spinal cord. In this investigation, we report that although the initial development of the corticospinal projection is normal through the cortex, internal capsule, cerebral peduncle, and medulla in the brain of EphA4 deficient animals, corticospinal axons exhibit gross abnormalities when they enter the gray matter of the spinal cord. Notably, many corticospinal axons fail to remain confined to one side of the spinal cord during development and instead, aberrantly project across the midline, terminating ipsilateral to their cells of origin. Given the possible repulsive interactions between EphA4 and one of its ligands, ephrinB3, this defect could be consistent with a loss of responsiveness by corticospinal axons to ephrinB3 that is expressed at the spinal cord midline. Furthermore, we show that EphA4 deficient animals exhibit ventral displacement of the mature corticospinal termination pattern, suggesting that developing corticospinal axons, which may also express ephrinB3, fail to be repelled from areas of high EphA4 expression in the intermediate zone of the normal spinal cord. Taken together, these results suggest that the dual expression of EphA4 on corticospinal axons and also within the surrounding gray matter is very important for the correct development and termination of the corticospinal projection within the spinal cord. J. Comp. Neurol. 436: 248-262, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
The selective loss of neurones in a range of neurodegenerative diseases is widely thought to involve the process of excitotoxicity, in which glutamate-mediated neuronal killing is elaborated through the excessive stimulation of cell-surface receptors. Every such disease exhibits a distinct regional and subregional pattern of neuronal loss. so processes must be locally triggered to different extents to account for this. We have studied several mechanisms which could lead to excitotoxic glutamate pathophysiology and compared them in different diseases. Our data suggest that glutamate can reach toxic extracellular levels in Alzheimer disease by malfunctions in cellular transporters, and that the toxicity may be exacerbated by continued glutamate release from presynaptic neurones acting on hypersensitive postsynaptic receptors. Thus the excitotoxicity is direct. In contrast, alcoholic brain damage arises in regions where GABA-mediated inhibition is deficient, and fails properly to dampen trans-synaptic excitation, Thus the excitotoxicity is indirect. A variety of such mechanisms is possible, which may combine in different ways.
Resumo:
GABA(A) receptor sites were characterised in cerebral cortex tissue samples from deceased neurologically normal infants who had come to autopsy during the third trimester of pregnancy. Pharmacological parameters were obtained from homogenate binding studies which utilised the 'central-type' benzodiazepine ligands [H-3]diazepam and [H-3]flunitrazepam, and from the GABA activation of [H-3]diazepam binding. It was found that the two radioligands behaved differently during development. The affinity of [H-3]flunitrazepam for its binding site did not vary significantly between preparations, whereas the [H-3]diazepam K-D showed marked regional and developmental variations: infant tissues showed a distinctly lower affinity than adults for this ligand. The density of [H-3]flunitrazepam binding sites increased similar to35% during the third trimester to reach adult levels by term, whereas [H-3]diazepam binding capacity declined slightly but steadily throughout development. The GABA activation of [H-3]diazepam binding was less efficient early in the trimester, in that the affinity of the agonist was significantly lower, though it rose to adult levels by term. The strength of the enhancement response increased to adult levels over the same time-frame. The results strongly suggest that the subunit composition of cortical GABA(A) sites changes significantly during this important developmental stage. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
We have performed immunocytochemistry on rat brains using a highly specific antiserum directed against the originally described form of the glutamate transporter GLT-1 (referred to hereafter as GLT-1alpha), and another against a C-terminal splice variant of this protein, GLT-1B. Both forms of GLT-1 were abundant in rat brain, especially in regions such as the hippocampus and cerebral cortex, and macroscopic examination of sections suggested that both forms were generally regionally coexistent. However, disparities were evident; GLT-1alpha was present in the intermediate lobe of the pituitary gland, whereas GLT-1B was absent. Similar marked disparities were also noted in the external capsule, where GLT1A labeling was abundant but GLT-1B was only occasionally encountered. Conversely, GLT-1B was more extensively distributed, relative to GLT-1alpha, in areas such as the deep cerebellar nuclei. In most regions, such as the olfactory bulbs, both splice variants were present but differences were evident in their distribution. In cerebral cortex, patches were evident where GLT-1B was absent, whereas no such patches were evident for GLT-1alpha. At high resolution, other discrepancies were evident; double-labeling of areas such as hippocampus indicated that the. two splice variants may either be differentially expressed by closely apposed glial elements or that the two splice variants may be differentially targeted to distinct membrane domains of individual glial cells. (C) 2002 Wiley-Liss, Inc.
Resumo:
The apparent L-[H-3]glutamate uptake rate (v') was measured in synaptic vesicles isolated from cerebral cortex synaptosomes prepared from autopsied Alzheimer and non-Alzheimer dementia cases, and age-matched controls. The initial synaptosome preparations exhibited similar densities of D-[H-3]aspartate membrane binding sites (B-MAX values) in the three groups. In control brain the temporal cortex D-[H-3]aspartate B-MAX was 132% of that in motor cortex, parallel with the L- [H-3]glutamate v' values (temporal = 139% of motor; NS). Unlike D- [H-3]aspartate B-MAX values, L- [H-3]glutamate v' values were markedly and selectively lower in Alzheimer brain preparations than in controls, particularly in temporal cortex. The difference could not be attributed to differential effects of autopsy interval or age at death. Non-Alzheimer dementia cases resembled controls. The selective loss of vesicular glutamate transport is consistent with a dysfunction in the recycling of transmitter glutamate.
Resumo:
Undemutrition during early life is known to cause deficits and distortions of brain structure although it has remained uncertain whether or not this includes a diminution of the total numbers of neurons. Estimates of numerical density (e.g. number of cells per microscopic field, or number of cells per unit area of section, or number of cells per unit volume of tissue) are extremely difficult to interpret and do not provide estimates of total numbers of cells. However, advances in stereological techniques have made it possible to obtain unbiased estimates of total numbers of cells in well defined biological structures. These methods have been utilised in studies to determine the effects of varying periods of undernutrition during early life on the numbers of neurons in various regions of the rat brain. The regions examined so far have included the cerebellum, the dentate gyrus, the olfactory bulbs and the cerebral cortex. The only region to show, unequivocally, that a period of undernutrition during early life causes a deficit in the number of neurons was the dentate gyrus. These findings are discussed in the context of other morphological and functional deficits present in undernourished animals.
Resumo:
Mental retardation in individuals with Down syndrome (DS) is thought to result from anomalous development and function of the brain; however, the underlying neuropathological processes have yet to be determined. Early implementation of special care programs result in limited, and temporary, cognitive improvements in DS individuals. In the present study, we investigated the possible neural correlates of these limited improvements. More specifically, we studied cortical pyramidal cells in the frontal cortex of Ts65Dn mice, a partial trisomy of murine chromosome 16 (MMU16) model characterized by cognitive deficits, hyperactivity, behavioral disruption and reduced attention levels similar to those observed in DS, and their control littermates. Animals were raised either in a standard or in an enriched environment. Environmental enrichment had a marked effect on pyramidal cell structure in control animals. Pyramidal cells in environmentally enriched control animals were significantly more branched and more spinous than non-enriched controls. However, environmental enrichment had little effect on pyramidal cell structure in Ts65Dn mice. As each dendritic spine receives at least one excitatory input, differences in the number of spines found in the dendritic arbors of pyramidal cells in the two groups reflect differences in the number of excitatory inputs they receive and, consequently, complexity in cortical circuitry. The present results suggest that behavioral deficits demonstrated in the Ts65Dn model could be attributed to abnormal circuit development.