782 resultados para CEMENTS
Resumo:
The aim of this study was to evaluate the physicochemical properties and bioactivity of two formulations of calcium silicate-based cements containing additives (CSCM) or resin (CSCR), associated with radiopacifying agents zirconium oxide (ZrO2) and niobium oxide (Nb2O5) as micro- and nanoparticles; calcium tungstate (CaWO4); and bismuth oxide (Bi2O3). MTA Angelus was used as control. Methods. Surface features and bioactivity were evaluated by scanning electron microscopy and the chemical composition by energy dispersive X-ray spectrometry (EDS-X). Results. CSCM and CSCR presented larger particle sizes than MTA. Hydroxyapatite deposits were found on the surface of some materials, especially when associated with the radiopacifier with ZrO2 nanoparticles. All the cements presented calcium, silicon, and aluminum in their composition. Conclusion. Both calcium silicate-based cements presented composition and bioactivity similar to MTA when associated with the radiopacifiers evaluated.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this work was to evaluate the biological compatibility of the Sealapex, Apexit, Sealer 26 and Ketac Endo endodontic cements. Polyethylene tubes containing these cements were implanted in the subcutaneous tissue of 40 (forty) rats. The animals were sacrificed after 14 and 90 days. A descriptive analysis of the reactions found in the connective tissue by contact with the cements was performed. The magnitude of inflammatory infiltrate, the presence and predominance of cell types and their distribution as to the filling material and reparative phenomena, such as fibroblastic and angioblastic proliferation and formation of fibrous capsules, were subjectively measured. After 90 days, all cements presented statistically significant reduction of the inflammatory reaction, presence of a fibrous tissue capsule in contact with the opening of the tubes containing the filling materials, and reduction of fibroblastic proliferation. Angioblastic proliferation decreased only for the Sealer 26 and Ketac Endo groups. All cements tested were either partially or totally phagocyted, and the mildest inflammatory response was found for the Sealer 26 group at both evaluation periods.
Resumo:
To evaluate the transdentinal cytotoxicity of resin-based luting cements (RBLCs), with no HEMA in their composition, to odontoblast-like cells. Human dentine discs 0.3 mm thick were adapted to artificial pulp chambers (APCs) and placed in wells of 24-well plates containing 1 mL of culture medium (DMEM). Two categories of HEMA-free RBLCs were evaluated: group 1, self-adhesive Rely X Unicem (RU; 3M ESPE), applied directly to the dentine substrate; and group 2, Rely X ARC (RARC; 3M ESPE), applied to dentine previously acid-etched and treated with a bonding agent. In group 3 (control), considered as representing 100% cell metabolic activity, no treatment was performed on dentine. The APC/disc sets were incubated for 24 h or 7 days at 37 °C and 5% CO2 . Then, the extracts (DMEM + dental materials components that diffused through dentine) were applied to cultured odontoblast-like MDPC-23 cells for 24 h. After that, the cell viability (MTT assay), cell morphology (SEM), total protein production (TP) and alkaline phosphatase (ALP) activity were assessed. Data from MTT assay and TP production were analysed by Kruskal-Wallis and Mann-Whitney tests (α = 5%). Data from ALP activity were analysed by one-way anova and Tukey's test (α = 5%). In group 1, a slight reduction in cell viability (11.6% and 16.8% for 24-h and 7-day periods, respectively) and ALP activity (13.5% and 17.9% for 24-h and 7-day periods, respectively) was observed, with no significant difference from group 3 (control) (P > 0.05). In group 2, a significant reduction in cell viability, TP production and ALP activity compared with group 3 (control) occurred (P < 0.05), regardless of incubation time. Alteration in MDPC-23 cell morphology was observed only in group 2. HEMA-free Rely X ARC cement caused greater toxicity to odontoblast-like MDPC-23 cells than did Rely X Unicem cement when both resin-based luting materials were applied to dentine as recommended by the manufacturer.
Resumo:
The purpose of this study was to evaluate the effect of self-adhesive and self-etching resin cements on the bond strength of nonmetallic posts in different root regions. Sixty single-rooted human teeth were decoronated, endodontically treated, post-space prepared, and divided into six groups. Glass-fiber (GF) posts (Exacto, Angelus) and fiber-reinforced composite (FRC) posts (EverStick, StickTeck) were cemented with self-adhesive resin cement (Breeze) (SA) (Pentral Clinical) and self-etching resin cement (Panavia-F) (SE) (Kuraray). Six 1-mm-thick rods were obtained from the cervical (C), middle (M), and apical (A) regions of the roots. The specimens were then subjected to microtensile testing in a special machine (BISCO; Schaumburg, IL, USA) at a crosshead speed of 0.5 mm/min. Microtensile bond strength data were analyzed with two-way ANOVA and Tukey's tests. Means (and SD) of the MPa were: GF/SA/C: 14.32 (2.84), GF/SA/M: 10.69 (2.72), GF/SA/A: 6.77 (2.17), GF/SE/C: 11.56 (4.13), GF/SE/M: 6.49 (2.54), GF/SE/A: 3.60 (1.29), FRC/SA/C: 16.89 (2.66), FRC/SA/M: 13.18 (2.19), FRC/SA/A: 8.45 (1.77), FRC/SE/C: 13.69 (3.26), FRC/SE/M: 9.58 (2.23), FRC/SE/A: 5.62 (2.12). The difference among the regions was statistically significant for all groups (p < 0.05). The self-adhesive resin cement showed better results than the self-etching resin cement when compared to each post (p < 0.05). No statistically significant differences in bond strengths of the resin cements when comparable to each post (p > 0.05). The bond strength values were significantly affected by the resin cement and the highest values were found for self-adhesive resin cement.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10×1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (=0.05). Results. The Zinc Cement was the most radiopaque material tested (<0.05). The resin cements presented higher radiopacity (<0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (<0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard.
Resumo:
Introduction and objective: Glass ionomer cement, which was first introduced in Dentistry in 1972, presents good qualities such as aesthetics, fluoride release and adhesion to dental tissues. Because of its preventive characteristics regarding to dental caries, glass ionomer cement has been used for Atraumatic Restorative Treatment (ART), as reported by Frencken and Holmgren [6], meeting the principles announced by the World Health Organization (WHO) for application to large population groups without regular access to dental care. Material and methods: In this present study, the abrasive wear strength of two glass-ionomer cements (Vidrion R® and ChemFlex®) was evaluated through toothbrushing machine. Classic® toothbrushes with soft bristles and Sorriso® dentifrice were also used for the study. Results: Student-t test showed significant difference between both groups, with tobs value = 9.4411 at p < 0.05. Conclusion: It can be concluded that the wear rate caused by toothbrush/dentifrice was higher for Vidrion R® (52.00 mg) than ChemFlex® (5.57 mg).
Resumo:
Objectives: To determine the micro-hardness profile of two dual cure resin cements (RelyX - U100 (R), 3M-ESPE and Panavia F 2.0 (R), Kuraray) used for cementing fiber-reinforced resin posts (Fibrekor (R) - Jeneric Pentron) under three different curing protocols and two water storage times. Material and methods: Sixty 16mm long bovine incisor roots were endodontically treated and prepared for cementation of the Fibrekor posts. The cements were mixed as instructed, dispensed in the canal, the posts were seated and the curing performed as follows: a) no light activation; b) light-activation immediately after seating the post, and; c) light-activation delayed 5 minutes after seating the post. The teeth were stored in water and retrieved for analysis after 7 days and 3 months. The roots were longitudinally sectioned and the microhardness was determined at the cervical, middle and apical regions along the cement line. The data was analyzed by the three-way ANOVA test (curing mode, storage time and thirds) for each cement. The Tukey test was used for the post-hoc analysis. Results: Light-activation resulted in a significant increase in the microhardness. This was more evident for the cervical region and for the Panavia cement. Storage in water for 3 months caused a reduction of the micro-hardness for both cements. The U100 cement showed less variation in the micro-hardness regardless of the curing protocol and storage time. Conclusions: The micro-hardness of the cements was affected by the curing and storage variables and were material-dependent.
Resumo:
Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.
Resumo:
Background: The aim of this study was to compare the shear bond strength between Ni-Cr alloy specimens bonded to air-abraded Ni-Cr, bur-abraded Ni-Cr, etched ceramic and etched enamel substrates using the resin cements RelyX ARC or Enforce. Materials and methods: Ni-Cr specimens were made and sandblasted with Al2O3 airborne-particles. Disc-shaped patterns were made for each of the four experimental substrates: Ni-Cr treated with Al2O3 airborne-particles, Ni-Cr treated with diamond bur abrasion, etched enamel and etched ceramic. Results: Significant differences in shear bond strength were found between the different materials and luting agents evaluated. The Ni-Cr alloy cylinders bonded to Ni-Cr surfaces sandblasted with 50 lm Al2O3 particles and bonded with Enforce achieved the highest bond strength when compared with other substrates (28.9 MPa, p < 0.05). Bur-abraded metal discs had lowest values, regardless the cement used (2.9 and 6.9 MPa for RelyX and Enforce, respectively). Etched enamel and etched ceramic had similar shear bond strengths within cement groups and performed better when RelyX was used. Conclusions: Bonding Ni-Cr to Ni-Cr and ceramic may result in similar and higher bond strength when compared to Ni-Cr/enamel bonding. For metal/metal bonding, higher shear bond strength was achieved with resin cement Enforce, and for metal/ceramic and metal/enamel bonding, RelyX had higher results.
Resumo:
The aim of this study was to evaluate the influence of different curing lights and chemical catalysts on the degree of conversion of resin luting cements. A total of 60 disk-shaped specimens of RelyX ARC or Panavia F of diameter 5 mm and thickness 0.5 mm were prepared and the respective chemical catalyst (Scotchbond Multi-Purpose Plus or ED Primer) was added. The specimens were light-cured using different curing units (an argon ion laser, an LED or a quartz-tungsten-halogen light) through shade A2 composite disks of diameter 10 mm and thickness 2 mm. After 24 h of dry storage at 37A degrees C, the degree of conversion of the resin luting cements was measured by Fourier-transformed infrared spectroscopy. For statistical analysis, ANOVA and the Tukey test were used, with p a parts per thousand currency signaEuro parts per thousand 0.05. Panavia F when used without catalyst and cured using the LED or the argon ion laser showed degree of conversion values significantly lower than RelyX ARC, with and without catalyst, and cured with any of the light sources. Therefore, the degree of conversion of Panavia F with ED Primer cured with the quartz-tungsten-halogen light was significantly different from that of RelyX ARC regardless of the use of the chemical catalyst and light curing source. In conclusion, RelyX ARC can be cured satisfactorily with the argon ion laser, LED or quartz-tungsten-halogen light with or without a chemical catalyst. To obtain a satisfactory degree of conversion, Panavia F luting cement should be used with ED Primer and cured with halogen light.
Resumo:
The objective of this study was to evaluate the push-out bond strength of fiberglass resin reinforced bonded with five ionomer cements. Also, the interface between cement and dentin was inspected by means of SEM. Fifty human canines were chose after rigorous scrutiny process, endodontically treated and divided randomly into five groups (n = 3) according to cement tested: Group I – Ionoseal (VOCO), Group II – Fugi I (GC), Group III – Fugi II Improved (GC), Group IV – Rely X Luting 2 (3M ESPE), Group V – Ketac Cem (3M ESPE). The post-space was prepared to receive a fiberglass post, which was tried before cementation process. No dentin or post surface pretreatment was carried out. After post bonding, all roots were cross-sectioned to acquire 3 thin-slices (1 mm) from three specific regions of tooth (cervical, medium and apical). A Universal test machine was used to carry out the push-out test with cross-head speed set to 0.5mm/mim. All failed specimens were observed under optical microscope to identify the failure mode. Representative specimens from each group was inspected under SEM. The data were analyzed by Kolmogorov-Smirnov and Levene’s tests and by two-way ANOVA, and Tukey’s port hoc test at a significance level of 5%. It was compared the images obtained for determination of types of failures more occurred in different levels. SEM inspection displayed that all cements filled the space between post and dentin, however, some imperfections such bubles and voids were noticed in all groups in some degree of extension. The push-out bond strength showed that cement Ketac Cem presented significant higher results when compared to the Ionoseal (P = 0.02). There were no statistical significant differences among other cements.