989 resultados para Building Capability
Resumo:
Tract consultants are a landscape architecture practice, founded in 1973 as an offshoot to the highly innovative, interdisciplinary design and build company Merchant Builders, and was perhaps the first truly corporate practice of this type in Australia. Founding directors Rodney Wulff and Steve Calhoun were both instrumental in establishing the undergraduate landscape architecture course at RMIT University, and bringing our Jim Sinatra, who had taught Calhoun at the University of Iowa. Wulff remained for many years the holder of the only doctorate in landscape architecture in the country. This combination of an academic, design and professional agenda was a rich one for Tract in their early days. This founding generosity and interest in the intellectual aspects of landscape architecture continues in relation to the university in a number of ways, including information ones, such as the regular employment of applicants who fail to get into the course at RMIT. In preparing them for re-applying, he has given a number of individuals a way into the profession that the university could not allow.
Resumo:
PROJECT BRIEF Information provided by the Built Environment Industry Innovation Council as background to this project includes the following information on construction and innovation within the industry. • The construction industry contributes around $67 billion to GDP and employs around 970,000 and generates exports of nearly $150 million. • The industry has one of the lowest innovation rates of any industry in Australia, ranking third last across all Australian industries in terms of its proportion of business expenditure on innovation, and second last in terms of the proportion of income generated from innovation (ABS, 2006). • Key innovation challenges include addressing energy and water use efficiency, and housing costs in preparing for the implementation of the Carbon Pollution Reduction Scheme. The sector will need to build its capability and capacity to deliver the technical and operational expertise required.The broader Built Environment Innovation Project aims to address the following two objectives: 1. Identify current innovative practice across the Built Environment industry. 2. Develop a knowledge exchange strategy for this information to be disseminated to all industry stakeholders. Industry practice issues are critical to the built environment industry’s ability to innovate, and the BRITE project from the CRC for Construction Innovation has previously undertaken work to identify the key factors that drive innovation. Part 1 of the current project aims to extend this work by conducting a stocktake of current and emerging innovative practices within the built environment industry. Part 2 of the project addresses the second of these objectives, that is, to recommend a knowledge exchange strategy for promoting the wider uptake of innovative practices that makes the information identified in Part 1 of the study (on emerging innovative practices) accessible to Australian built environment industry stakeholders. The project brief was for the strategy to include a mechanism to enable this information resource to be updated as new initiatives/practices are developed. A better understanding of the built environment industry’s own knowledge infrastructure also has the potential to enhance innovation outcomes for the industry. This project will develop a coordinated knowledge exchange strategy, informed by the best available information on current innovation practices within the industry and suggest directions for gaining a better understanding of: the industry contexts that lead to innovative practices; the industry (including enterprise and individual) drivers for innovation; and appropriate knowledge exchange pathways for delivering future industry innovation. A deliverable of Part 2 will be a recommendation for a knowledge exchange strategy to accelerate adoption of innovative practices in the built environment industry, including resource implications and how such a recommendation could be taken forward as an ongoing resource.
Resumo:
Recent theoretical work has suggested “entrepreneurial capabilities” themselves may provide the resource foundations to deliver competitive advantage for entrepreneurial firms. This paper empirically examines how start-ups use such entrepreneurial capabilities to build competitive advantage. We investigate the effects of technological and marketing expertise, knowledge of market trends, flexibility and networking on the ability to obtain a cost leadership or differentiation advantage. Using a large dataset of 1,108 start-ups obtained after random sampling of over 30,193 households, we find that differentiation strategies benefit from most resource advantages. Cost leadership strategies, however, seem only to benefit from technological expertise and flexibility and not related to market-based advantages. By doing so, this study contributes to both entrepreneurship and RBV-theories by showing how entrepreneurial capabilities lead to competitive advantages in nascent and early-stage start-ups.
Resumo:
Historically, asset management focused primarily on the reliability and maintainability of assets; organisations have since then accepted the notion that a much larger array of processes govern the life and use of an asset. With this, asset management’s new paradigm seeks a holistic, multi-disciplinary approach to the management of physical assets. A growing number of organisations now seek to develop integrated asset management frameworks and bodies of knowledge. This research seeks to complement existing outputs of the mentioned organisations through the development of an asset management ontology. Ontologies define a common vocabulary for both researchers and practitioners who need to share information in a chosen domain. A by-product of ontology development is the realisation of a process architecture, of which there is also no evidence in published literature. To develop the ontology and subsequent asset management process architecture, a standard knowledge-engineering methodology is followed. This involves text analysis, definition and classification of terms and visualisation through an appropriate tool (in this case, the Protégé application was used). The result of this research is the first attempt at developing an asset management ontology and process architecture.
Resumo:
The research landscape is changing rapidly, and as a consequence the roles of libraries and librarians in supporting and working with researchers is also changing. Some of the drivers behind the changes in research practices and culture include: new technologies, government funding and measurement of research impact, and the importance of open access to data. In Australia, librarians work with researchers to help them identify high quality resources, increase their publication rate and manage and promote access to their research. QUT Library has established a number of initiatives to support researchers, including: establishment of the QUT digital repository ‘ePrints’; purchase of electronic books and electronic journals; programmes of workshops for researchers ; redesign of Library space and, and the creation of new staffing positions. The creation of the QUT ePrints repository was a major new initiative for the QUT Library. ePrints is a web-accessible repository of research outputs created for QUT staff and postgraduate students. The ePrints information is harvested by Google, and anyone searching for a QUT staff member on Google can find their publications listed in ePrints. This keynote address will discuss the context for the role of libraries in building research endeavours, highlight some examples of strategies and resources to supporting researchers. It will conclude with an outline of some key online resources for researchers in education. This presentation should be relevant for both individual researchers interested in conducting and promoting their own research, and for staff and organisations focused on building their support for research.
Resumo:
There has been increasing reliance on mechanical heating, ventilation and air-conditioning (HVAC) systems to achieve thermal comfort in office buildings. The use of universal standards for thermal comfort adopted in air-conditioned spaces often results in a large disparity between mean daily external summer temperatures and temperatures experienced indoors. The extensive overuse of air-conditioning in warm climates not only isolates us from the vagaries of the external environment, but is generally dependent on non-renewable energy. A pilot study conducted at the Queensland University of Technology (QUT) involved altering the thermostat set-points to two or three degrees above the normal summer setting in two air-conditioned buildings during the subtropical summer. This paper presents the findings of the research that led to the formulation of the test study. The findings of the test study are printed in the companion paper DES 72: Adjusting Building Thermastats for Environmental Gains – a Pilot Study.
Resumo:
This paper discusses the preliminary findings of an ongoing research project aimed at developing a technological, operational and strategic analysis of adopting BIM in AEC/FM (Architecture-Engineering-Construction/Facility Management) industry as a collaboration tool. Outcomes of the project will provide specifications and guidelines as well as establish industry standards for implementing BIM in practice. This research primarily focuses on BIM model servers as a collaboration platform, and hence the guidelines are aimed at enhancing collaboration capabilities. This paper reports on the findings from: (1) a critical review of latest BIM literature and commercial applications, and (2) workshops with focus groups on changing work-practice, role of technology, current perception and expectations of BIM. Layout for case studies being undertaken is presented. These findings provide a base to develop comprehensive software specifications and national guidelines for BIM with particular emphasis on BIM model servers as collaboration platforms.
Resumo:
Building Information Modelling (BIM) is an IT enabled technology that allows storage, management, sharing, access, update and use of all the data relevant to a project through out the project life-cycle in the form of a data repository. BIM enables improved inter-disciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. While the technology itself may not be new, and similar approaches have been in use in some other sectors like Aircraft and Automobile industry for well over a decade now, the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry is still to catch up with them in its ability to exploit the benefits of the IT revolution. Though the potential benefits of the technology in terms of knowledge sharing, project management, project co-ordination and collaboration are near to obvious, the adoption rate has been rather lethargic, inspite of some well directed efforts and availability of supporting commercial tools. Since the technology itself has been well tested over the years in some other domains the plausible causes must be rooted well beyond the explanation of the ‘Bell Curve of innovation adoption’. This paper discusses the preliminary findings of an ongoing research project funded by the Cooperative Research Centre for Construction Innovation (CRC-CI) which aims to identify these gaps and come up with specifications and guidelines to enable greater adoption of the BIM approach in practice. A detailed literature review is conducted that looks at some of the similar research reported in the recent years. A desktop audit of some of the existing commercial tools that support BIM application has been conducted to identify the technological issues and concerns, and a workshop was organized with industry partners and various players in the AEC industry for needs analysis, expectations and feedback on the possible deterrents and inhibitions surrounding the BIM adoption.
Resumo:
Classroom talk has long been recognised as central to student learning. Efforts are made therefore to 'stretch', 'extend' or 'push' English-language learners' (ELLS') linguistic and conceptual development by promoting more complex instructional talk. Conversation is a two-way activity, yet the focus is often directed to the ELL. To address this gap, this article suggests ideas for developing the capabilities of all students -- ELLS or otherwise -- for instructional conversations in mainstream classrooms where English is used by some as a first or only language, and by others as a second language.
Resumo:
Understanding users' capabilities, needs and expectations is key to the domain of Inclusive Design. Much of the work in the field could be informed and further strengthened by clear, valid and representative data covering the full range of people's capabilities. This article reviews existing data sets and identifies the challenges inherent in measuring capability in a manner that is informative for work in Inclusive Design. The need for a design-relevant capability data set is identified and consideration is given to a variety of capability construct operationalisation issues including questions associated with self-report and performance measures, sampling and the appropriate granularity of measures. The need for further experimental work is identified and a programme of research designed to culminate in the design of a valid and reliable capability survey is described.
Resumo:
Building integrated living systems (BILS), such as green roofs and living walls, could mitigate many of the challenges presented by climate change and biodiversity protection. However, few if any such systems have been constructed, and current tools for evaluating them are limited, especially under Australian subtropical conditions. BILS are difficult to assess, because living systems interact with complex, changing and site-specific social and environmental conditions. Our past research in design for eco-services has confirmed the need for better means of assessing the ecological values of BILS - let alone better models for assessing their thermal and hydrological performance. To address this problem, a research project is being developed jointly by researchers at the Central Queensland University (CQ University) and the Queensland University of Technology (QUT), along with industry collaborators. A mathematical model under development at CQ University will be applied and tested to determine its potential for predicting their complex, dynamic behaviour in different contexts. However, the paper focuses on the work at QUT. The QUT school of design is generating designs for living walls and roofs that provide a range of ecosystem goods and services, or ‘eco-services’, for a variety of micro-climates and functional contexts. The research at QUT aims to develop appropriate designs, virtual prototypes and quantitative methods for assessing the potential multiple benefits of BILS in subtropical climates. It is anticipated that the CQ University model for predicting thermal behaviour of living systems will provide a platform for the integration of ecological criteria and indicators. QUT will also explore means to predict and measure the value of eco-services provided by the systems, which is still largely uncharted territory. This research is ultimately intended to facilitate the eco-retrofitting of cities to increase natural capital and urban resource security - an essential component of sustainability. The talk will present the latest range of multifunctional, eco-productive living walls, roofs and urban space frames and their eco-services.
Resumo:
Context The School of Information Technology at QUT has recently undertaken a major restructuring of their Bachelor of Information Technology (BIT) course. Some of the aims of this restructuring include a reduction in first year attrition and to provide an attractive degree course that meets both student and industry expectations. Emphasis has been placed on the first semester in the context of retaining students by introducing a set of four units that complement one another and provide introductory material on technology, programming and related skills, and generic skills that will aid the students throughout their undergraduate course and in their careers. This discussion relates to one of these four fist semester units, namely Building IT Systems. The aim of this unit is to create small Information Technology (IT) systems that use programming or scripting, databases as either standalone applications or web applications. In the prior history of teaching introductory computer programming at QUT, programming has been taught as a stand alone subject and integration of computer applications with other systems such as databases and networks was not undertaken until students had been given a thorough grounding in those topics as well. Feedback has indicated that students do not believe that working with a database requires programming skills. In fact, the teaching of the building blocks of computer applications have been compartmentalized and taught in isolation from each other. The teaching of introductory computer programming has been an industry requirement of IT degree courses as many jobs require at least some knowledge of the topic. Yet, computer programming is not a skill that all students have equal capabilities of learning (Bruce et al., 2004) and this is clearly shown by the volume of publications dedicated to this topic in the literature over a broad period of time (Eckerdal & Berglund, 2005; Mayer, 1981; Winslow, 1996). The teaching of this introductory material has been done pretty much the same way over the past thirty years. During this period of time that introductory computer programming courses have been taught at QUT, a number of different programming languages and programming paradigms have been used and different approaches to teaching and learning have been attempted in an effort to find the golden thread that would allow students to learn this complex topic. Unfortunately, computer programming is not a skill that can be learnt in one semester. Some basics can be learnt but it can take many years to master (Norvig, 2001). Faculty data typically has shown a bimodal distribution of results for students undertaking introductory programming courses with a high proportion of students receiving a high mark and a high proportion of students receiving a low or failing mark. This indicates that there are students who understand and excel with the introductory material while there is another group who struggle to understand the concepts and practices required to be able to translate a specification or problem statement into a computer program that achieves what is being requested. The consequence of a large group of students failing the introductory programming course has been a high level of attrition amongst first year students. This attrition level does not provide good continuity in student numbers in later years of the degree program and the current approach is not seen as sustainable.
Resumo:
3D Virtual Environments (VE) are real; they exist as digital worlds with the advantage of having none of the constraints of the real world. As such they are the perfect training ground for design students who can create, build and experiment with design solutions without the constraint of real world projects. This paper reports on an educational setting used to explore a model for using VE such as Second Life (SL) developed by Linden Labs in California, as a collaborative environment for design education. A postgraduate landscape architecture learning environment within a collaborative design unit was developed to integrate this model where the primary focus was the application of three-dimensional tools within design, not as a presentation tool, but rather as a design tool. The focus of the unit and its aims and objectives will be outlined before describing the use of SL in the unit. Attention is focused on the collaboration and learning experience before discussing the outcomes, student feedback, future projects using this model and potential for further research. The outcome of this study aims to contribute to current research on teaching and learning design in interactive VE’s. We present a case study of our first application of this model.
Resumo:
The high level of scholarly writing required for a doctoral thesis is a challenge for many research students. However, formal academic writing training is not a core component of many doctoral programs. Informal writing groups for doctoral students may be one method of contributing to the improvement of scholarly writing. In this paper, we report on a writing group that was initiated by an experienced writer and higher degree research supervisor to support and improve her doctoral students’ writing capabilities. Over time, this group developed a workable model to suit their varying needs and circumstances. The model comprised group sessions, an email group, and individual writing. Here, we use a narrative approach to explore the effectiveness and value of our research writing group model in improving scholarly writing. The data consisted of doctoral students’ reflections to stimulus questions about their writing progress and experiences. The stimulus questions sought to probe individual concerns about their own writing, what they had learned in the research writing group, the benefits of the group, and the disadvantages and challenges to participation. These reflections were analysed using thematic analysis. Following this analysis, the supervisor provided her perspective on the key themes that emerged. Results revealed that, through the writing group, members learned technical elements (e.g., paragraph structure), non-technical elements (e.g., working within limited timeframes), conceptual elements (e.g., constructing a cohesive arguments), collaborative writing processes, and how to edit and respond to feedback. In addition to improved writing quality, other benefits were opportunities for shared writing experiences, peer support, and increased confidence and motivation. The writing group provides a unique social learning environment with opportunities for: professional dialogue about writing, peer learning and review, and developing a supportive peer network. Thus our research writing group has proved an effective avenue for building doctoral students’ capability in scholarly writing. The proposed model for a research writing group could be applicable to any context, regardless of the type and location of the university, university faculty, doctoral program structure, or number of postgraduate students. It could also be used within a group of students with diverse research abilities, needs, topics and methodologies. However, it requires a group facilitator with sufficient expertise in scholarly writing and experience in doctoral supervision who can both engage the group in planned writing activities and also capitalise on fruitful lines of discussion related to students’ concerns as they arise. The research writing group is not intended to replace traditional supervision processes nor existing training. However it has clear benefits for improving scholarly writing in doctoral research programs particularly in an era of rapidly increasing student load.