990 resultados para Bose-Einstein gas
Resumo:
Neste trabalho de mestrado é estudada a estabilidade de vórtices em condensados de Bose-Einstein com interação atrativa entre os átomos através da solução numérica da equação de Gross-Pitaevskii. Inicialmente são reproduzidos resultados da literatura, nos quais são estudados vórtices em condensados bidimensionais atrativos com potencial interatômico homogêneo em todo o condensado. A estabilidade de tais sistemas é inferida através da solução numérica das equações de Bogoliubov-de Gennes e da evolução temporal dos vórtices. Demonstra-se que esses vórtices são estáveis, até um certo número crítico de átomos, apenas para valores de vorticidade S=1. Em seguida foi proposto um modelo no qual a interação entre os átomos é espacialmente modulada. Neste caso é possível demonstrar que vórtices com valores de vorticidade de até S=6, pelo menos, são estáveis. Finalmente é estudada a estabilidade de vórtices em condensados tridimensionais atrativos, novamente com potencial interatômico homogêneo em todo o condensado. Assim como no caso bidimensional mostra-se que tais vórtices são estáveis para valores de vorticidade de S=1. Espera-se em breve estudar a estabilidade de vórtices em condesados tridimensionais com potencial de interação espacialmente modulado.
Resumo:
Estudamos transições de fases quânticas em gases bosônicos ultrafrios aprisionados em redes óticas. A física desses sistemas é capturada por um modelo do tipo Bose-Hubbard que, no caso de um sistema sem desordem, em que os átomos têm interação de curto alcance e o tunelamento é apenas entre sítios primeiros vizinhos, prevê a transição de fases quântica superfluido-isolante de Mott (SF-MI) quando a profundidade do potencial da rede ótica é variado. Num primeiro estudo, verificamos como o diagrama de fases dessa transição muda quando passamos de uma rede quadrada para uma hexagonal. Num segundo, investigamos como a desordem modifica essa transição. No estudo com rede hexagonal, apresentamos o diagrama de fases da transição SF-MI e uma estimativa para o ponto crítico do primeiro lobo de Mott. Esses resultados foram obtidos usando o algoritmo de Monte Carlo quântico denominado Worm. Comparamos nossos resultados com os obtidos a partir de uma aproximação de campo médio e com os de um sistema com uma rede ótica quadrada. Ao introduzir desordem no sistema, uma nova fase emerge no diagrama de fases do estado fundamental intermediando a fase superfluida e a isolante de Mott. Essa nova fase é conhecida como vidro de Bose (BG) e a transição de fases quântica SF-BG que ocorre nesse sistema gerou muitas controvérsias desde seus primeiros estudos iniciados no fim dos anos 80. Apesar dos avanços em direção ao entendimento completo desta transição, a caracterização básica das suas propriedades críticas ainda é debatida. O que motivou nosso estudo, foi a publicação de resultados experimentais e numéricos em sistemas tridimensionais [Yu et al. Nature 489, 379 (2012), Yu et al. PRB 86, 134421 (2012)] que violam a lei de escala $\\phi= u z$, em que $\\phi$ é o expoente da temperatura crítica, $z$ é o expoente crítico dinâmico e $ u$ é o expoente do comprimento de correlação. Abordamos essa controvérsia numericamente fazendo uma análise de escalonamento finito usando o algoritmo Worm nas suas versões quântica e clássica. Nossos resultados demonstram que trabalhos anteriores sobre a dependência da temperatura de transição superfluido-líquido normal com o potencial químico (ou campo magnético, em sistemas de spin), $T_c \\propto (\\mu-\\mu_c)^\\phi$, estavam equivocados na interpretação de um comportamento transiente na aproximação da região crítica genuína. Quando os parâmetros do modelo são modificados de maneira a ampliar a região crítica quântica, simulações com ambos os modelos clássico e quântico revelam que a lei de escala $\\phi= u z$ [com $\\phi=2.7(2)$, $z=3$ e $ u = 0.88(5)$] é válida. Também estimamos o expoente crítico do parâmetro de ordem, encontrando $\\beta=1.5(2)$.
Resumo:
In this thesis, we present the generation and studies of a 87Rb Bose-Einstein condensate (BEC) perturbed by an oscillatory excitation. The atoms are trapped in a harmonic magnetic trap where, after an evaporative cooling process, we produce the BEC. In order to study the effect caused by oscillatory excitations, a quadrupole magnetic field time oscillatory is superimposed to the trapping potential. Through this perturbation, collective modes were observed. The dipole mode is excited even for low excitation amplitudes. However, a minimum excitation energy is needed to excite the condensate quadrupole mode. Observing the excited cloud in TOF expansion, we note that for excitation amplitude in which the quadrupole mode is excited, the cloud expands without invert its aspect ratio. By looking these clouds, after long time-of-flight, it was possible to see vortices and, sometimes, a turbulent state in the condensed cloud. We calculated the momentum distribution of the perturbed BECs and a power law behavior, like the law to Kolmogorov turbulence, was observed. Furthermore, we show that using the method that we have developed to calculate the momentum distribution, the distribution curve (including the power law exponent) exhibits a dependence on the quadrupole mode oscillation of the cloud. The randomness distribution of peaks and depletions in density distribution image of an expanded turbulent BEC, remind us to the intensity profile of a speckle light beam. The analogy between matter-wave speckle and light speckle is justified by showing the similarities in the spatial propagation (or time expansion) of the waves. In addition, the second order correlation function is evaluated and the same dependence with distance was observed for the both waves. This creates the possibility to understand the properties of quantum matter in a disordered state. The propagation of a three-dimensional speckle field (as the matter-wave speckle described here) creates an opportunity to investigate the speckle phenomenon existing in dimensions higher than 2D (the case of light speckle).
Resumo:
We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates-a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and, thus, the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the two modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.
Resumo:
0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.
Resumo:
We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.
Resumo:
Dynamical tunneling is a quantum phenomenon where a classically forbidden process occurs that is prohibited not by energy but by another constant of motion. The phenomenon of dynamical tunneling has been recently observed in a sodium Bose-Einstein condensate. We present a detailed analysis of these experiments using numerical solutions of the three-dimensional Gross-Pitaevskii equation and the corresponding Floquet theory. We explore the parameter dependency of the tunneling oscillations and we move the quantum system towards the classical limit in the experimentally accessible regime.
Resumo:
By stochastic modeling of the process of Raman photoassociation of Bose-Einstein condensates, we show that, the farther the initial quantum state is from a coherent state, the farther the one-dimensional predictions are from those of the commonly used zero-dimensional approach. We compare the dynamics of condensates, initially in different quantum states, finding that, even when the quantum prediction for an initial coherent state is relatively close to the Gross-Pitaevskii prediction, an initial Fock state gives qualitatively different predictions. We also show that this difference is not present in a single-mode type of model, but that the quantum statistics assume a more important role as the dimensionality of the model is increased. This contrasting behavior in different dimensions, well known with critical phenomena in statistical mechanics, makes itself plainly visible here in a mesoscopic system and is a strong demonstration of the need to consider physically realistic models of interacting condensates.
Resumo:
In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.
Resumo:
In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The ene:rgy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points.
Resumo:
We propose a scheme for parametric amplification and phase conjugation of an atomic Bose-Einstein condensate (BEC) via stimulated dissociation of a BEC of molecular dimers consisting of bosonic atoms. This can potentially be realized via coherent Raman transitions or using a magnetic Feshbach resonance. We show that the interaction of a small incoming atomic BEC with a (stationary) molecular BEC can produce two counterpropagating atomic beams - an amplified atomic BEC and its phase-conjugate or "time-reversed" replica. The two beams can possess strong quantum correlation in the relative particle number, with squeezed number-difference fluctuations.
Resumo:
We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.
Resumo:
We describe the production of BECs on a new type of atom chip based on silver foil. Our atom chip is fabricated with thick wires capable of carrying currents of several amperes without overheating. The silver surface is highly reflective to light resonant with optical transitions used for Rb. The pattern on the chip consists of two parallel Z-trap wires, capable of producing two-wire guide, and two additional endcap wires for varying the axial confinement. Condensates are produced in magnetic microtraps formed within 1 mm of surface of the chip. We have observed the fragmentation of cold atom clouds when brought close to the chip surface. This results from a perturbed trapping potential caused by nanometer deviations of the current path through the wires on the chip. We present results of fragmentation of cold clouds at distances below 100 µm from the wires and investigate the origin of the deviating current. The fragmentation has different characteristics to those seen with copper conductors. The dynamics of atoms in these microtraps is also investigated. ©2005 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Resumo:
In this paper, we present a theoretical study of a Bose-Einstein condensate of interacting bosons in a quartic trap in one, two, and three dimensions. Using Thomas-Fermi approximation, suitably complemented by numerical solutions of the Gross-Pitaevskii equation, we study the ground sate condensate density profiles, the chemical potential, the effects of cross-terms in the quartic potential, temporal evolution of various energy components of the condensate, and width oscillations of the condensate. Results obtained are compared with corresponding results for a bose condensate in a harmonic confinement.