735 resultados para Beaches classification
Resumo:
v.11:no.1(1947)
Resumo:
no.14
Resumo:
Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.
Resumo:
Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.
Resumo:
Difficult tracheal intubation assessment is an important research topic in anesthesia as failed intubations are important causes of mortality in anesthetic practice. The modified Mallampati score is widely used, alone or in conjunction with other criteria, to predict the difficulty of intubation. This work presents an automatic method to assess the modified Mallampati score from an image of a patient with the mouth wide open. For this purpose we propose an active appearance models (AAM) based method and use linear support vector machines (SVM) to select a subset of relevant features obtained using the AAM. This feature selection step proves to be essential as it improves drastically the performance of classification, which is obtained using SVM with RBF kernel and majority voting. We test our method on images of 100 patients undergoing elective surgery and achieve 97.9% accuracy in the leave-one-out crossvalidation test and provide a key element to an automatic difficult intubation assessment system.
Resumo:
We determine he optimal combination of a universal benefit, B, and categorical benefit, C, for an economy in which individuals differ in both their ability to work - modelled as an exogenous zero quantity constraint on labour supply - and, conditional on being able to work, their productivity at work. C is targeted at those unable to work, and is conditioned in two dimensions: ex-ante an individual must be unable to work and be awarded the benefit, whilst ex-post a recipient must not subsequently work. However, the ex-ante conditionality may be imperfectly enforced due to Type I (false rejection) and Type II (false award) classification errors, whilst, in addition, the ex-post conditionality may be imperfectly enforced. If there are no classification errors - and thus no enforcement issues - it is always optimal to set C>0, whilst B=0 only if the benefit budget is sufficiently small. However, when classification errors occur, B=0 only if there are no Type I errors and the benefit budget is sufficiently small, while the conditions under which C>0 depend on the enforcement of the ex-post conditionality. We consider two discrete alternatives. Under No Enforcement C>0 only if the test administering C has some discriminatory power. In addition, social welfare is decreasing in the propensity to make each type error. However, under Full Enforcement C>0 for all levels of discriminatory power. Furthermore, whilst social welfare is decreasing in the propensity to make Type I errors, there are certain conditions under which it is increasing in the propensity to make Type II errors. This implies that there may be conditions under which it would be welfare enhancing to lower the chosen eligibility threshold - support the suggestion by Goodin (1985) to "err on the side of kindness".