959 resultados para Bayesian inference on precipitation
Resumo:
A physically motivated statistical model is used to diagnose variability and trends in wintertime ( October - March) Global Precipitation Climatology Project (GPCP) pentad (5-day mean) precipitation. Quasi-geostrophic theory suggests that extratropical precipitation amounts should depend multiplicatively on the pressure gradient, saturation specific humidity, and the meridional temperature gradient. This physical insight has been used to guide the development of a suitable statistical model for precipitation using a mixture of generalized linear models: a logistic model for the binary occurrence of precipitation and a Gamma distribution model for the wet day precipitation amount. The statistical model allows for the investigation of the role of each factor in determining variations and long-term trends. Saturation specific humidity q(s) has a generally negative effect on global precipitation occurrence and with the tropical wet pentad precipitation amount, but has a positive relationship with the pentad precipitation amount at mid- and high latitudes. The North Atlantic Oscillation, a proxy for the meridional temperature gradient, is also found to have a statistically significant positive effect on precipitation over much of the Atlantic region. Residual time trends in wet pentad precipitation are extremely sensitive to the choice of the wet pentad threshold because of increasing trends in low-amplitude precipitation pentads; too low a choice of threshold can lead to a spurious decreasing trend in wet pentad precipitation amounts. However, for not too small thresholds, it is found that the meridional temperature gradient is an important factor for explaining part of the long-term trend in Atlantic precipitation.
Resumo:
We present the first assessment of phylogenetic utility of a potential novel low-copy nuclear gene region in flowering plants. A fragment of the MORE AXILLARY GROWTH 4 gene (MAX4, also known as RAMOSUS1 and DECREASED APICAL DOMINANCE1), predicted to span two introns, was isolated from members of Digitalis/Isoplexis. Phylogenetic analyses, under both maximum parsimony and Bayesian inference, were performed and revealed evidence of putative MAX4-like paralogues. The MAX4-like trees were compared with those obtained for Digitalis/Isoplexis using ITS and trnL-F, revealing a high degree of incongruence between these different DNA regions. Network analyses indicate complex patterns of evolution between the MAX4 sequences, which cannot be adequately represented on bifurcating trees. The incidence of paralogy restricts the use of MAX4 in phylogenetic inference within the study group, although MAX4 could potentially be used in combination with other DNA regions for resolving species relationships in cases where paralogues can be clearly identified.
Resumo:
We present the first assessment of phylogenetic utility of a potential novel low-copy nuclear gene region in flowering plants. A fragment of the MORE AXILLARY GROWTH 4 gene (MAX4, also known as RAMOSUS1 and DECREASED APICAL DOMINANCE1), predicted to span two introns, was isolated from members of Digitalis/Isoplexis. Phylogenetic analyses, under both maximum parsimony and Bayesian inference, were performed and revealed evidence of putative MAX4-like paralogues. The MAX4-like trees were compared with those obtained for Digitalis/Isoplexis using ITS and trnL-F, revealing a high degree of incongruence between these different DNA regions. Network analyses indicate complex patterns of evolution between the MAX4 sequences, which cannot be adequately represented on bifurcating trees. The incidence of paralogy restricts the use of MAX4 in phylogenetic inference within the study group, although MAX4 could potentially be used in combination with other DNA regions for resolving species relationships in cases where paralogues can be clearly identified.
Resumo:
The evolutionary history of gains and losses of vegetative reproductive propagules (soredia) in Porpidia s.l., a group of lichen-forming ascomycetes, was clarified using Bayesian Markov chain Monte Carlo (MCMC) approaches to monophyly tests and a combined MCMC and maximum likelihood approach to ancestral character state reconstructions. The MCMC framework provided confidence estimates for the reconstructions of relationships and ancestral character states, which formed the basis for tests of evolutionary hypotheses. Monophyly tests rejected all hypotheses that predicted any clustering of reproductive modes in extant taxa. In addition, a nearest-neighbor statistic could not reject the hypothesis that the vegetative reproductive mode is randomly distributed throughout the group. These results show that transitions between presence and absence of the vegetative reproductive mode within Porpidia s.l. occurred several times and independently of each other. Likelihood reconstructions of ancestral character states at selected nodes suggest that - contrary to previous thought - the ancestor to Porpidia s.l. already possessed the vegetative reproductive mode. Furthermore, transition rates are reconstructed asymmetrically with the vegetative reproductive mode being gained at a much lower rate than it is lost. A cautious note has to be added, because a simulation study showed that the ancestral character state reconstructions were highly dependent on taxon sampling. However, our central conclusions, particularly the higher rate of change from vegetative reproductive mode present to absent than vice versa within Porpidia s.l., were found to be broadly independent of taxon sampling. [Ancestral character state reconstructions; Ascomycota, Bayesian inference; hypothesis testing; likelihood; MCMC; Porpidia; reproductive systems]
Resumo:
A physically motivated statistical model is used to diagnose variability and trends in wintertime ( October - March) Global Precipitation Climatology Project (GPCP) pentad (5-day mean) precipitation. Quasi-geostrophic theory suggests that extratropical precipitation amounts should depend multiplicatively on the pressure gradient, saturation specific humidity, and the meridional temperature gradient. This physical insight has been used to guide the development of a suitable statistical model for precipitation using a mixture of generalized linear models: a logistic model for the binary occurrence of precipitation and a Gamma distribution model for the wet day precipitation amount. The statistical model allows for the investigation of the role of each factor in determining variations and long-term trends. Saturation specific humidity q(s) has a generally negative effect on global precipitation occurrence and with the tropical wet pentad precipitation amount, but has a positive relationship with the pentad precipitation amount at mid- and high latitudes. The North Atlantic Oscillation, a proxy for the meridional temperature gradient, is also found to have a statistically significant positive effect on precipitation over much of the Atlantic region. Residual time trends in wet pentad precipitation are extremely sensitive to the choice of the wet pentad threshold because of increasing trends in low-amplitude precipitation pentads; too low a choice of threshold can lead to a spurious decreasing trend in wet pentad precipitation amounts. However, for not too small thresholds, it is found that the meridional temperature gradient is an important factor for explaining part of the long-term trend in Atlantic precipitation.
Resumo:
Inference on the basis of recognition alone is assumed to occur prior to accessing further information (Pachur & Hertwig, 2006). A counterintuitive result of this is the “less-is-more” effect: a drop in the accuracy with which choices are made as to which of two or more items scores highest on a given criterion as more items are learned (Frosch, Beaman & McCloy, 2007; Goldstein & Gigerenzer, 2002). In this paper, we show that less-is-more effects are not unique to recognition-based inference but can also be observed with a knowledge-based strategy provided two assumptions, limited information and differential access, are met. The LINDA model which embodies these assumptions is presented. Analysis of the less-is-more effects predicted by LINDA and by recognition-driven inference shows that these occur for similar reasons and casts doubt upon the “special” nature of recognition-based inference. Suggestions are made for empirical tests to compare knowledge-based and recognition-based less-is-more effects
Resumo:
The effect of a warmer climate on the properties of extra-tropical cyclones is investigated using simulations of the ECHAM5 global climate model at resolutions of T213 (60 km) and T319 (40 km). Two periods representative of the end of the 20th and 21st centuries are investigated using the IPCC A1B scenario. The focus of the paper is on precipitation for the NH summer and winter seasons, however results from vorticity and winds are also presented. Similar number of events are identified at both resolutions. There are, however, a greater number of extreme precipitation events in the higher reso- lution run. The difference between maximum intensity distributions are shown to be statistically significant using a Kolmogorov-Smirnov test. A Generalised Pareto Distribution is used to analyse changes in extreme precipitation and wind events. In both resolutions, there is an increase in the number of ex- treme precipitation events in a warmer climate for all seasons, together with a reduction in return period. This is not associated with any increased verti- cal velocity, or with any increase in wind intensity in the winter and spring. However, there is an increase in wind extremes in the summer and autumn associated with tropical cyclones migrating into the extra-tropics.
Resumo:
Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.
Resumo:
In this paper, we consider some non-homogeneous Poisson models to estimate the probability that an air quality standard is exceeded a given number of times in a time interval of interest. We assume that the number of exceedances occurs according to a non-homogeneous Poisson process (NHPP). This Poisson process has rate function lambda(t), t >= 0, which depends on some parameters that must be estimated. We take into account two cases of rate functions: the Weibull and the Goel-Okumoto. We consider models with and without change-points. When the presence of change-points is assumed, we may have the presence of either one, two or three change-points, depending of the data set. The parameters of the rate functions are estimated using a Gibbs sampling algorithm. Results are applied to ozone data provided by the Mexico City monitoring network. In a first instance, we assume that there are no change-points present. Depending on the adjustment of the model, we assume the presence of either one, two or three change-points. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper, we consider the problem of estimating the number of times an air quality standard is exceeded in a given period of time. A non-homogeneous Poisson model is proposed to analyse this issue. The rate at which the Poisson events occur is given by a rate function lambda(t), t >= 0. This rate function also depends on some parameters that need to be estimated. Two forms of lambda(t), t >= 0 are considered. One of them is of the Weibull form and the other is of the exponentiated-Weibull form. The parameters estimation is made using a Bayesian formulation based on the Gibbs sampling algorithm. The assignation of the prior distributions for the parameters is made in two stages. In the first stage, non-informative prior distributions are considered. Using the information provided by the first stage, more informative prior distributions are used in the second one. The theoretical development is applied to data provided by the monitoring network of Mexico City. The rate function that best fit the data varies according to the region of the city and/or threshold that is considered. In some cases the best fit is the Weibull form and in other cases the best option is the exponentiated-Weibull. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.
Resumo:
In this paper we make use of some stochastic volatility models to analyse the behaviour of a weekly ozone average measurements series. The models considered here have been used previously in problems related to financial time series. Two models are considered and their parameters are estimated using a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods. Both models are applied to the data provided by the monitoring network of the Metropolitan Area of Mexico City. The selection of the best model for that specific data set is performed using the Deviance Information Criterion and the Conditional Predictive Ordinate method.
Resumo:
The main goal of this paper is to investigate a cure rate model that comprehends some well-known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example.
Resumo:
The main object of this paper is to discuss the Bayes estimation of the regression coefficients in the elliptically distributed simple regression model with measurement errors. The posterior distribution for the line parameters is obtained in a closed form, considering the following: the ratio of the error variances is known, informative prior distribution for the error variance, and non-informative prior distributions for the regression coefficients and for the incidental parameters. We proved that the posterior distribution of the regression coefficients has at most two real modes. Situations with a single mode are more likely than those with two modes, especially in large samples. The precision of the modal estimators is studied by deriving the Hessian matrix, which although complicated can be computed numerically. The posterior mean is estimated by using the Gibbs sampling algorithm and approximations by normal distributions. The results are applied to a real data set and connections with results in the literature are reported. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
There are several versions of the lognormal distribution in the statistical literature, one is based in the exponential transformation of generalized normal distribution (GN). This paper presents the Bayesian analysis for the generalized lognormal distribution (logGN) considering independent non-informative Jeffreys distributions for the parameters as well as the procedure for implementing the Gibbs sampler to obtain the posterior distributions of parameters. The results are used to analyze failure time models with right-censored and uncensored data. The proposed method is illustrated using actual failure time data of computers.