899 resultados para Bacillus thuringiensis.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A área brasileira plantada com milho geneticamente modificado (GM) expressando genes Cry derivados da bactéria do solo Bacillus thuringiensis (Bt) aumentou de 4,9% (5,0 milhões de hectares) da área total plantada em 2009 para 81,4% (15,83 milhões de hectares) em 2014. No entanto, estudos sobre os efeitos da tecnologia Bt-milho sobre microrganismos não alvo em solos tropicais são incipientes. Dessa forma, foi realizado experimento de campo para avaliar a atividade fisiológica das comunidades bacterianas associadas com genótipos de milho Bt plantados em Latossolo Vermelho Escuro do Cerrado e solos hidromórficos da planície com inundações localizadas. Um híbrido não transgênico (30F35) e seus homólogos transgênicos 30F35Y (Cry1Ab) e 30F35H (Cry1F) foram plantados com delineamento de blocos casualizados com quatro repetições. Solos rizosféricos e não rizosféricos coletados de plantas no estádio de florescimento foram submetidos aos ensaios de diversidade metabólica com Biolog e atividades enzimáticas de urease, arginase, fosfatase ácida e fosfatase alcalina. Solos rizosféricos apresentaram maior atividade microbiana e não foram detectadas diferenças significativas entre os genótipos em todos os parâmetros bioquímicos e de solo avaliados. Os resultados sugerem que o milho Bt não afeta negativamente a comunidade microbiana dos solos tropicais.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biotecnologia em Controlo Biológico, 27 de Junho de 2013, Universidade dos Açores.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Microbiología Industrial) UANL

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Microbiología Industrial) UANL

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Microbiología) U.A.N.L. Facultad de Ciencias Biológicas

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tesis (Doctorado en Ciencias con Especialidad en Microbiología) UANL

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacillus thuringiensis (Bt), is an environmental Gram-positive spore-forming bacterium that produces crystalline parasporal protein (Cry) during sporulation. The inclusions often exhibit strong and specific insecticidal activity, making Bt an agent for agricultural controlling insects pest, mites, protozoa and nematodes. Recent studies reported that some of these Crys do not show cytotoxicity against insects but they are capable to kill some human and animal cancer cells. These proteins were denominated parasporins (PS). However, antitumor activity of Bt parasporin on the development of murine colorectal cancer (CT-26), are not well studies and these are no reports on the in vivo effect of these proteins. Thus, the present study evaluated the in vitro and in vivo anti-tumoral activity of Bt parasporin against the murine colorectal cancer line CT-26. Therefore, Balb/c mice were s.c. inoculated with CT-26 cells and weekly treated with parasporin (i.p.) pre-activated by enzymatic digestion with trypsin or proteinase K. Our results have shown, for the first time, that despite the anti-tumor activity in vitro, parasporin crystals couldn’t combat tumor growth in vivo. Instead, this protein was highly toxic, affecting the liver and spleen, with possible effect on other organs, decreasing the survival of treated animals. The results indicate the need for studies to better detoxification or manipulation of parasporin for therapeutic use and new studies for analysis of toxicological effects of repetitive exposure of farmers to this toxin

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The susceptibility of most Bacillus anthracis strains to β-lactam antibiotics is intriguing considering that the B. anthracis genome harbors two β-lactamase genes, bla1 and bla2, and closely-related species, Bacillus cereus and Bacillus thuringiensis, typically produce β-lactamases. This work demonstrates that B. anthracis bla expression is affected by two genes, sigP and rsp, predicted to encode an extracytoplasmic function sigma factor and an antisigma factor, respectively. Deletion of the sigP/rsp locus abolished bla expression in a penicillin-resistant clinical isolate and had no effect on bla expression in a prototypical penicillin-susceptible strain. Complementation with sigP/rsp from the penicillin-resistant strain, but not the penicillin-susceptible strain, conferred β-lactamase activity upon both mutants. These results are attributed to a nucleotide deletion near the 5' end of rsp in the penicillin-resistant strain that is predicted to result in a nonfunctional protein. B. cereus and B. thuringiensis sigP and rsp homologues are required for inducible penicillin resistance in those species. Expression of the B. cereus or B. thuringiensis sigP and rsp genes in a B. anthracis sigP/rsp-null mutant confers resistance to β-lactam antibiotics, suggesting that while B. anthracis contains the genes necessary for sensing β-lactam antibiotics, the B. anthracis sigP/rsp gene products are insufficient for bla induction. ^ Because alternative sigma factors recognize unique promoter sequence, direct targets can be elucidated by comparing transcriptional profiling results with an in silico search using the sigma factor binding sequence. Potential σP -10 and -35 promoter elements were identified upstream from bla1 bla2 and sigP. Results obtained from searching the B. anthracis genome with the conserved sequences were evaluated against transcriptional profiling results comparing B. anthracis 32 and an isogenic sigP/rsp -null strain. Results from these analyses indicate that while the absence of the sigP gene significantly affects the transcript levels of 16 genes, only bla1, bla2 and sigP are directly regulated by σP. The genomes of B. cereus and B. thuringiensis strains were also analyzed for the potential σP binding elements. The sequence was located upstream from the sigP and bla genes, and previously unidentified genes predicted to encode a penicillin-binding protein (PBP) and a D-alanyl-D-alanine carboxypeptidase, indicating that the σ P regulon in these species responds to cell-wall stress caused by β-lactam antibiotics. ^ β-lactam antibiotics prevent attachment of new peptidoglycan to the cell wall by blocking the active site of PBPs. A B. cereus and B. thuringiensis pbp-encoding gene located near bla1 contains a potential σP recognition sequence upstream from the annotated translational start. Deletion of this gene abolished β-lactam resistance in both strains. Mutations in the active site of the PBP were detrimental to β-lactam resistance in B. cereus, but not B. thuringiensis, indicating that the transpeptidase activity is only important in B. cereus. I also found that transcript levels of the PBP-encoding gene are not significantly affected by the presence of β-lactam antibiotic. Based on these data I hypothesize that the gene product acts a sensor of β-lactam antibiotic. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RNA interference induced in insects after ingestion of plant-expressed hairpin RNA offers promise for managing devastating crop pests

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gene regulation signals from subterranean clover stunt virus (SCSV) were investigated for their expression in dicot plants. The SCSV genome has at least eight circular DNA molecules. Each circular DNA component contains a promoter element, a single open reading frame and a terminator. The promoters from seven of the segments were examined for their strength and tissue specificity in transgenic tobacco (Nicotiana tabacum L.), potato (Solanum tuberosum L.) and cotton (Gossypium hirsutum L.) using a GUS reporter gene assay system. While the promoters of many of the segments were poorly expressed, promoters derived from segments 4 and 7 were shown to direct high levels of expression in various plant tissues and organs. The segment 1 promoter directs predominantly callus-specific expression and, when used to control a selectable marker gene, facilitated the transformation of all three species (tobacco, potato and cotton). From the results, a suite of plant expression vectors (pPLEX) derived from the SCSV genome were constructed and used here to produce herbicide- and insect-resistant cotton, demonstrating their utility in the expression of foreign genes in dicot crop species and their potential for use in agricultural biotechnology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aerial applications of granular insecticides are preferable because they can effectively penetrate vegetation, there is less drift, and no loss of product due to evaporation. We aimed to 1) assess the field efficacy ofVectoBac G to control Aedes vigilax (Skuse) in saltmarsh pools, 2) develop a stochastic-modeling procedure to monitor application quality, and 3) assess the distribution of VectoBac G after an aerial application. Because ground-based studies with Ae. vigilax immatures found that VectoBac G provided effective control below the recommended label rate of 7 kg/ha, we trialed a nominated aerial rate of 5 kg/ha as a case study. Our distribution pattern modeling method indicated that the variability in the number of VectoBac G particles captured in catch-trays was greater than expected for 5 kg/ha and that the widely accepted contour mapping approach to visualize the deposition pattern provided spurious results and therefore was not statistically appropriate. Based on the results of distribution pattern modeling, we calculated the catch tray size required to analyze the distribution of aerially applied granular formulations. The minimum catch tray size for products with large granules was 4 m2 for Altosid pellets and 2 m2 for VectoBac G. In contrast, the minimum catch-tray size for Altosid XRG, Aquabac G, and Altosand, with smaller granule sizes, was 1 m2. Little gain in precision would be made by increasing the catch-tray size further, when the increased workload and infrastructure is considered. Our improved methods for monitoring the distribution pattern of aerially applied granular insecticides can be adapted for use by both public health and agricultural contractors.