894 resultados para Ausonius, Decimus Magnus.
Resumo:
O efeito magnetocalórico, base da refrigeração magnética, é caracterizado por duas quantidades: a variação isotérmica da entropia (ΔST) e a variação adiabática da temperatura (ΔTad) as quais podem ser obtidas sob variações na intensidade de um campo magnético aplicado. Em sistemas que apresentam anisotropia magnética, pode‐se definir o efeito magnetocalórico anisotrópico, o qual, por definição, é calculado através da variação na direção de aplicação de um campo magnético cuja intensidade se mantém fixa. Nos materiais de nosso interesse, o efeito magnetocalórico é estudado teoricamente partindo de um hamiltoniano modelo que leva em conta a rede magnética (que pode ser composta por diversas sub-redes magnéticas acopladas), rede cristalina e a dinâmica dos elétrons de condução. No hamiltoniano magnético são consideradas as interações de troca, Zeeman e campo cristalino (esta ultima responsável pela anisotropia magnética). Recentemente, estudamos o efeito magnetocalórico convencional e o efeito magnetocalórico anisotrópico nos compostos mononitretos com terras-raras, a saber: Ho(y)Er(1-y)N para as concentrações y= 0,1,0.5 e 0.75. Comparações entre nossos resultados teóricos e os dados experimentais para o EMC foram bastante satisfatórias [3,9]. Além disso, diversas predições teóricas como a existência de uma fase ferrimagnética no sistema Ho(y)Er(1-y)N (para a concentração y=0.5) e reorientações de spin nas sub-redes do Ho e Er foram feitas [25].
Resumo:
Em geral, o efeito magnetocalórico (EMC) é caracterizado pela variação adiabática da temperatura (ΔTad) e a variação isotérmica da entropia (ΔST) sob variações do campo magnético. Devido as aplicações tecnológicas do EMC na refrigeração magnética, que não apresentam efeitos perigosos para o meio ambiente e tem o potencial para reduzir o consumo de energia, os estudos sobre o EMC tem crescido ao longo dos anos . Neste trabalho, estudamos as propriedades magnéticas e magnetocalóricos da série Gd (1-Y) Pr (Y) Ni2 com Y = 0; 0,25; 0,5; 0,75 e 1 A série dos compostos RNi2 compostos cristalizam na fase de Laves cúbico C15, o que torna o Campo Elétrico Cristalino cúbico um quadro adequado para descrever a anisotropia magnética sobre estes compostos . Além do modelo hamiltoniano inclui contribuições do efeito Zeeman e as interações de troca indireta entre Gd-Gd, Gd-Pr e íons Pr-Pr. Vale a pena notar que o GdNi2 apresenta um arranjo ferromagnético com temperatura de transição de cerca de 78 K e o composto PrNi2 é paramagnético. Os potenciais magnetocalóricos foram calculados e comparados com os dados experimentais. Além disso, investigamos a influência da direção do campo magnético sobre as quantidades magnéticas e no EMC investigada.
Resumo:
The Second Round of Oil & Gas Exploration needs more precision imaging method, velocity vs. depth model and geometry description on Complicated Geological Mass. Prestack time migration on inhomogeneous media was the technical basic of velocity analysis, prestack time migration on Rugged surface, angle gather and multi-domain noise suppression. In order to realize this technique, several critical technical problems need to be solved, such as parallel computation, velocity algorithm on ununiform grid and visualization. The key problem is organic combination theories of migration and computational geometry. Based on technical problems of 3-D prestack time migration existing in inhomogeneous media and requirements from nonuniform grid, parallel process and visualization, the thesis was studied systematically on three aspects: Infrastructure of velocity varies laterally Green function traveltime computation on ununiform grid, parallel computational of kirchhoff integral migration and 3D visualization, by combining integral migration theory and Computational Geometry. The results will provide powerful technical support to the implement of prestack time migration and convenient compute infrastructure of wave number domain simulation in inhomogeneous media. The main results were obtained as follows: 1. Symbol of one way wave Lie algebra integral, phase and green function traveltime expressions were analyzed, and simple 2-D expression of Lie algebra integral symbol phase and green function traveltime in time domain were given in inhomogeneous media by using pseudo-differential operators’ exponential map and Lie group algorithm preserving geometry structure. Infrastructure calculation of five parts, including derivative, commutating operator, Lie algebra root tree, exponential map root tree and traveltime coefficients , was brought forward when calculating asymmetry traveltime equation containing lateral differential in 3-D by this method. 2. By studying the infrastructure calculation of asymmetry traveltime in 3-D based on lateral velocity differential and combining computational geometry, a method to build velocity library and interpolate on velocity library using triangulate was obtained, which fit traveltime calculate requirements of parallel time migration and velocity estimate. 3. Combining velocity library triangulate and computational geometry, a structure which was convenient to calculate differential in horizontal, commutating operator and integral in vertical was built. Furthermore, recursive algorithm, for calculating architecture on lie algebra integral and exponential map root tree (Magnus in Math), was build and asymmetry traveltime based on lateral differential algorithm was also realized. 4. Based on graph theory and computational geometry, a minimum cycle method to decompose area into polygon blocks, which can be used as topological representation of migration result was proposed, which provided a practical method to block representation and research to migration interpretation results. 5. Based on MPI library, a process of bringing parallel migration algorithm at arbitrary sequence traces into practical was realized by using asymmetry traveltime based on lateral differential calculation and Kirchhoff integral method. 6. Visualization of geological data and seismic data were studied by the tools of OpenGL and Open Inventor, based on computational geometry theory, and a 3D visualize system on seismic imaging data was designed.
Resumo:
In this paper, we introduce the Generalized Equality Classifier (GEC) for use as an unsupervised clustering algorithm in categorizing analog data. GEC is based on a formal definition of inexact equality originally developed for voting in fault tolerant software applications. GEC is defined using a metric space framework. The only parameter in GEC is a scalar threshold which defines the approximate equality of two patterns. Here, we compare the characteristics of GEC to the ART2-A algorithm (Carpenter, Grossberg, and Rosen, 1991). In particular, we show that GEC with the Hamming distance performs the same optimization as ART2. Moreover, GEC has lower computational requirements than AR12 on serial machines.
Resumo:
Training data for supervised learning neural networks can be clustered such that the input/output pairs in each cluster are redundant. Redundant training data can adversely affect training time. In this paper we apply two clustering algorithms, ART2 -A and the Generalized Equality Classifier, to identify training data clusters and thus reduce the training data and training time. The approach is demonstrated for a high dimensional nonlinear continuous time mapping. The demonstration shows six-fold decrease in training time at little or no loss of accuracy in the handling of evaluation data.
Resumo:
This study examined whether adding spin to a ball in the free kick situation in football affects a professional footballer's perception of the ball's future arrival position. Using a virtual reality set-up, participants observed the flight paths of aerodynamically realistic free kicks with (+/- 600 rpm) and without sidespin. With the viewpoint being fixed in the centre of the goal, participants had to judge whether the ball would have ended up in the goal or not. Results show that trajectories influenced by the Magnus force caused by sidespin gave rise to a significant shift in the percentage of goal responses. The resulting acceleration that causes the ball to continually change its heading direction as the trajectory unfolds does not seem to be taken into account by the participants when making goal judgments. We conclude that the visual system is not attuned to such accelerated motion, which may explain why goalkeepers appear to misjudge the future arrival point of such curved free kicks.
Resumo:
The journalistic boom that occurred in Argentina from the second half of the nineteenth century saw the emergence of an active afroporteña press that defend the interests of the black community. This paper, in addition to reviewing the history of the Afro-Argentines newspapers, emphasizes the role played by the elite of African descent in the promotion of modernity among his brothers, while exploring the possible bases for an identity in the ideas spread.
Resumo:
Histidine is a naturally occurring amino acid with antioxidant properties, which is present in low amounts in tissues throughout the body. We recently synthesized and characterized histidine analogues related to the natural dipeptide carnosine, which selectively scavenge the toxic lipid peroxidation product 4-hydroxynonenal (HNE). We now report that the histidine analogue histidyl hydrazide is effective in reducing brain damage and improving functional outcome in a mouse model of focal ischemic stroke when administered intravenously at a dose of 20 mg/kg, either 30 min before or 60 min and 3 h after the onset of middle cerebral artery occlusion. The histidine analogue also protected cultured rat primary neurons against death induced by HNE, chemical hypoxia, glucose deprivation, and combined oxygen and glucose deprivation. The histidine analogue prevented neuronal apoptosis as indicated by decreased production of cleaved caspase-3 protein. These findings suggest a therapeutic potential for HNE-scavenging histidine analogues in the treatment of stroke and related neurodegenerative conditions.
Resumo:
Cryptic species diversity is thought to be common within the class Insecta, posing problems for basic ecological and population genetic studies and conservation management. Within the temperate bumble bee (Bombus spp.) fauna, members of the subgenus Bombus sensu stricto are amongst the most abundant and widespread. However, their species diversity is controversial due to the extreme difficulty or inability morphologically to identify the majority of individuals to species. Our character-based phylogenetic analyses of partial CO1 (700 bp) from 39 individuals spread across their sympatric European ranges provided unequivocal support for five taxa (3-22 diagnostic DNA base pair sites per species). Inclusion of 20 Irish specimens to the dataset revealed >= 2.3% sequence divergence between taxa and 200 m) whilst B. cryptarum was relatively more abundant at higher altitudes. Bombus magnus was rarely encountered at urban sites. Both B. lucorum and B. terrestris are nowadays reared commercially for pollination and transported globally. Our RFLP approach to identify native fauna can underpin ecological studies of these important cryptic species as well as the impact of commercial bumble bees on them.
Resumo:
Vortex dynamics in inhomogeneous Bose-Einstein condensates are studied numerically in two and three dimensions. We simulate the precession of a single vortex around the center of a trapped condensate, and use the Magnus force to estimate the precession frequency. Vortex ring dynamics in a spherical trap are also simulated, and we discover that a ring undergoes oscillatory motion around a circle of maximum energy. The position of this locus is calculated as a function of the number of condensed atoms. In the presence of dissipation, the amplitude of the oscillation will increase, eventually resulting in self-annihilation of the ring.
Resumo:
Recently, considerable efforts have been made in the attempt to map quick clay areas using electrical resistivity measurements. However there is a lack of understanding regarding which soil parameters control the measured resistivity values. To address this issue, inverted resistivity values from 15 marine clay sites in Norway have been compared with basic geotechnical index properties. It was found that the resistivity value is strongly controlled by the salt content of the pore fluid. Resistivity decreases rapidly with increasing salt content. There is also a relatively clear trend of decreasing resistivity with increasing clay content and plasticity index. Resistivity values become very low (˜5 O·m) for high clay content (>50%), medium- to high-plasticity (Ip ˜ 20%) materials with salt content values greater than about 8 g/L (or corresponding remoulded shear strength values greater than 4 kPa). For the range of values studied, there is poor correlation between resistivity and bulk density and between resistivity and water content. The data studied suggest that the range of resistivity values corresponding to quick clay is 10 to 100 O·m, which is consistent with other published limits. A comparison is made between two-dimensional electrical resistivity tomography (ERT) and resistivity cone penetration test (RCPTU) data for two of the sites and the two sets of data show similar trends and values irrespective of scale effect.