869 resultados para Anti-inflammatory reflex
Resumo:
Palladium(II) complexes are an important class of cyclopalladated compounds that play a pivotal role in various pharmaceutical applications. Here, we investigated the antitumour, anti-infl ammatory, and mutagenic effects of two complexes: [Pd(dmba)(Cl)tu] (1) and [Pd(dmba)(N3)tu] (2) (dmba = N,N-dimethylbenzylamine and tu = thiourea), on Ehrlich ascites tumour (EAT) cells and peritoneal exudate cells (PECs) from mice bearing solid Ehrlich tumour. The cytotoxic effects of the complexes on EAT cells and PECs were assessed using the 3-(4,5-dimethylthiazol-3-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The effects of the complexes on the immune system were assessed based on the production of nitric oxide (NO) (Griess assay) and tumour necrosis factor-Į (TNF-Į), interleukin-12 (IL-12), and interleukin-10 (IL-10) (ELISA). Finally the mutagenic activity was assessed by the Ames test using the Salmonella typhimurium strain TA 98. Cisplatin was used as a standard. The IC50 ranges for the growth inhibition of EAT cells and PECs were found to be (72.8 ± 3.23) µM and (137.65 ± 0.22) µM for 1 and (39.7 ± 0.30) µM and (146.51 ± 2.67) µM for 2, respectively. The production of NO, IL-12, and TNF-Į, but not IL-10, was induced by both complexes and cisplatin. The complexes showed no mutagenicity in vitro, unlike cisplatin, which was mutagenic in the strain. These results indicate that the complexes are not mutagenic and have potential immunological and antitumour activities. These properties make them promising alternatives to cisplatin.
Resumo:
Alveolar bone loss associated with periodontal diseases is the result of osteoclastogenesis induced by bacterial pathogens. The mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is a critical negative regulator of immune response as a key phosphatase capable of dephosphorylating activated MAPKs. In this study, rat macrophages transduced with recombinant adenovirus (Ad.)MKP-1 specifically dephosphorylated activated MAPKs induced by lipopolysaccharide (LPS) compared with control cells. Bone marrow macrophages from MKP-1 knockout (KO) mice exhibited higher interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and select chemokine compared with wild-type (WT) mice when stimulated by LPS. In addition, bone marrow cultures from MKP-1 KO mice exhibited significantly more osteoclastogenesis induced by LPS than when compared with WT mice. Importantly, MKP-1 gene transfer in bone marrow cells of MKP-1 KO mice significantly decreased IL-6, IL-10, TNF-α and chemokine levels, and formed fewer osteoclasts induced by LPS than compared with control group of cells. Furthermore, MKP-1 gene transfer in an experimental periodontal disease model attenuated bone resorption induced by LPS. Histological analysis confirmed that periodontal tissues transduced with Ad. MKP-1 exhibited less infiltrated inflammatory cells, less osteoclasts and less IL-6 than compared with rats of control groups. These studies indicate that MKP-1 is a key therapeutic target to control of inflammation-induced bone loss.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Inflammatory bowel disease (IBD) is a chronic, relapsing, idiopathic inflammation of the gastrointestinal tract. Clinical studies suggest that the initiation of IBD is multifactorial, involving genetics, the immune system and environmental factors, such as diet, drugs and stress. Pfaffia paniculata is an adaptogenic medicinal plant used in Brazilian folk medicine as an anti-stress agent. Thus, we hypothesised that the P. paniculata enhances the response of animals subjected to colonic inflammation. Our aim was to investigate the intestinal anti-inflammatory activity of P. paniculata in rats before or after induction of intestinal inflammation using trinitrobenzenesulfonic acid (TNBS). The animals were divided into groups that received the vehicle, prednisolone or P. paniculata extract daily starting 14days before or 7days after TNBS induction. At the end of the procedure, the animals were killed and their colons were assessed for the macroscopic damage score (MDS), extent of the lesion (EL) and weight/length ratio, myeloperoxidase (MPO) activity and glutathione (GSH), cytokines and C-reactive protein (CRP) levels. Histological evaluation and ultrastructural analysis of the colonic samples were performed. Treatment with the 200mg/kg dose on the curative schedule was able to reduce the MDS and the EL. In addition, MPO activity was reduced, GSH levels were maintained, and the levels of pro-inflammatory cytokines and CRP were decreased. In conclusion, the protective effect of P. paniculata was related to reduced oxidative stress and CRP colonic levels, and due to immunomodulatory activity as evidenced by reduced levels of IL-1β, INF-γ, TNF-α and IL-6.
Resumo:
Alternanthera maritima are used in Brazilian popular medicine for the treatment of inflammatory and infectious diseases. Species of Alternanthera have demonstrated biological activities in previous scientific studies. The aim of this study was to determine whether the ethanol extract of the aerial parts of A. maritima (EEAM) and the isolated compound 2″-O-α-L-rhamnopyranosyl-vitexin inhibit mechanical hyperalgesia and parameters of inflammation in mice. The oral administration of EEAM significantly inhibited carrageenan (Cg)-induced paw edema and reduced leukocyte migration into the pleural cavity. 2″-O-α-L-rhamnopyranosylvitexin significantly inhibited paw edema and reduced both leukocyte migration and the leakage of protein into the pleural cavity. Both EEAM and 2″-O-α-L-rhamnopyranosylvitexin significantly prevented the Cg-induced hyperalgesia. Local administration of 2″-O-α-L-rhamnopyranosylvitexin significantly prevented the Cg- and tumor necrosis factor (TNF)-induced hyperalgesia. In conclusion, this study demonstrated that EEAM is an anti-inflammatory and anti-hyperalgesic agent, and the results suggested that 2″-O-α-L-rhamnopyranosylvitexin is responsible for the effects of EEAM and the mechanism involves the TNF pathway.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A series of anti-inflammatory derivatives containing an N-acyl hydrazone subunit (4a–e) were synthesized and characterized. Docking studies were performed that suggest that compounds 4a–e bind to cyclooxygenase (COX)-1 and COX-2 isoforms, but with higher affinity for COX-2. The compounds display similar anti-inflammatory activities in vivo, although compound 4c is the most effective compound for inhibiting rat paw edema, with a reduction in the extent of inflammation of 35.9% and 52.8% at 2 and 4 h, respectively. The anti-inflammatory activity of N-acyl hydrazone derivatives was inferior to their respective parent drugs, except for compound 4c after 5 h. Ulcerogenic studies revealed that compounds 4a–e are less gastrotoxic than the respective parent drug. Compounds 4b–e demonstrated mucosal damage comparable to celecoxib. The in vivo analgesic activities of the compounds are higher than the respective parent drug for compounds 4a–b and 4d–e. Compound 4a was more active than dipyrone in reducing acetic-acid-induced abdominal constrictions. Our results indicate that compounds 4a–e are anti-inflammatory and analgesic compounds with reduced gastrotoxicity compared to their respective parent non-steroidal anti-inflammatory drugs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
VIEIRA, R. D. P., A. C. TOLEDO, L. B. SILVA, F. M. ALMEIDA, N. R. DAMACENO-RODRIGUES, E. G. CALDINI, A. B. G. SANTOS, D. H. RIVERO, D. C. HIZUME, F. D. T. Q. S. LOPES, C. R. OLIVO, H. C. CASTRO-FARIA-NETO, M. A. MARTINS, P. H. N. SALDIVA, and M. DOLHNIKOFF. Anti-inflammatory Effects of Aerobic Exercise in Mice Exposed to Air Pollution. Med. Sci. Sports Exerc., Vol. 44, No. 7, pp. 1227-1234, 2012. Purpose: Exposure to diesel exhaust particles (DEP) results in lung inflammation. Regular aerobic exercise improves the inflammatory status in different pulmonary diseases. However, the effects of long-term aerobic exercise on the pulmonary response to DEP have not been investigated. The present study evaluated the effect of aerobic conditioning on the pulmonary inflammatory and oxidative responses of mice exposed to DEP. Methods: BALB/c mice were subjected to aerobic exercise five times per week for 5 wk, concomitantly with exposure to DEP (3 mg.mL (1); 10 mu L per mouse). The levels of exhaled nitric oxide, reactive oxygen species, cellularity, interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) were analyzed in bronchoalveolar lavage fluid, and the density of neutrophils and the volume proportion of collagen fibers were measured in the lung parenchyma. The cellular density of leukocytes expressing IL-1 beta, keratinocyte chemoattractant (KC), and TNF-alpha in lung parenchyma was evaluated with immunohistochemistry. The levels of IL-1 beta, KC, and TNF-alpha were also evaluated in the serum. Results: Aerobic exercise inhibited the DEP-induced increase in the levels of reactive oxygen species (P < 0.05); exhaled nitric oxide (P < 0.01); total (P < 0.01) and differential cells (P < 0.01); IL-6 and TNF-alpha levels in bronchoalveolar lavage fluid (P < 0.05); the level of neutrophils (P < 0.001); collagen density in the lung parenchyma (P < 0.05); the levels of IL-6, KC, and TNF-alpha in plasma (P < 0.05); and the expression of IL-1 beta, KC, and TNF-alpha by leukocytes in the lung parenchyma (P < 0.01). Conclusions: We conclude that long-term aerobic exercise presents protective effects in a mouse model of DEP-induced lung inflammation. Our results indicate a need for human studies that evaluate the pulmonary responses to aerobic exercise chronically performed in polluted areas.
Resumo:
This work describes the atropisomeric relationships of 3-methyl-5-(3-methyl-5-phenyl-1H-pyrazol-1-yl)-1-phenyl-1H-pyrazol-4-amine (2d), which belongs to series 4-aminobipyrazole derivatives designed as anti-inflammatory agents. The 1H nuclear magnetic resonance spectra obtained in the presence of a chiral lanthanide shift salt associated to chiral high-performance liquid chromatography analysis, X-ray diffraction, and molecular modeling tools confirmed that ortho bis-functionalized bipyrazole 2d exists as a mixture of aR,aS-atropisomers. These results provide useful information to understand the pharmacological profile of this derivative and of other 4-aminobipyrazole analogs. Chirality 24:463470, 2012. (c) 2012 Wiley Periodicals, Inc.