855 resultados para Annotation scheme
Resumo:
Health insurance has become a necessity for the common man, next to food, clothing and shelter. The financing of health expense is either catastrophic or sometimes even frequently contracted illnesses, is a major cause of mental agony for the common man. The cost of care may sometimes result in the complete erosion of the family savings or may even lead to indebtedness as many studies on causes of rural indebtedness bear testimony (Jayalakshmi, 2006). A suitable cover by way of health insurance is all that is required to cope with such situations. Health care insurance rightly provides the mechanism for both individuals and families to mitigate the financial burden of medical expenses in the present context. Hence a well designed affordable health insurance policy is the need of the hour.Therefore, it is very significant to study the extent to which the beneficiaries in Kerala make use of the benefits provided by a social health insurance scheme like RSBY-CHIS. Based on the above pertinent points, this study assumes national relevance even though the geographical area of the study is limited to two districts of Kerala. The findings of the study will bring forth valuable inputs on the services availed by the beneficiaries of RSBYCHIS and take appropriate measures to improve the effectiveness of the scheme whereby maximum quality benefit could be availed by the poorest of the poor and develop the scheme as a real dawn of the new era of health for them
Resumo:
Clustering schemes improve energy efficiency of wireless sensor networks. The inclusion of mobility as a new criterion for the cluster creation and maintenance adds new challenges for these clustering schemes. Cluster formation and cluster head selection is done on a stochastic basis for most of the algorithms. In this paper we introduce a cluster formation and routing algorithm based on a mobility factor. The proposed algorithm is compared with LEACH-M protocol based on metrics viz. number of cluster head transitions, average residual energy, number of alive nodes and number of messages lost
Resumo:
While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting
Resumo:
Coded OFDM is a transmission technique that is used in many practical communication systems. In a coded OFDM system, source data are coded, interleaved and multiplexed for transmission over many frequency sub-channels. In a conventional coded OFDM system, the transmission power of each subcarrier is the same regardless of the channel condition. However, some subcarrier can suffer deep fading with multi-paths and the power allocated to the faded subcarrier is likely to be wasted. In this paper, we compute the FER and BER bounds of a coded OFDM system given as convex functions for a given channel coder, inter-leaver and channel response. The power optimization is shown to be a convex optimization problem that can be solved numerically with great efficiency. With the proposed power optimization scheme, near-optimum power allocation for a given coded OFDM system and channel response to minimize FER or BER under a constant transmission power constraint is obtained
Resumo:
In recent years there is an apparent shift in research from content based image retrieval (CBIR) to automatic image annotation in order to bridge the gap between low level features and high level semantics of images. Automatic Image Annotation (AIA) techniques facilitate extraction of high level semantic concepts from images by machine learning techniques. Many AIA techniques use feature analysis as the first step to identify the objects in the image. However, the high dimensional image features make the performance of the system worse. This paper describes and evaluates an automatic image annotation framework which uses SURF descriptors to select right number of features and right features for annotation. The proposed framework uses a hybrid approach in which k-means clustering is used in the training phase and fuzzy K-NN classification in the annotation phase. The performance of the system is evaluated using standard metrics.
Resumo:
In this paper, we describe an interdisciplinary project in which visualization techniques were developed for and applied to scholarly work from literary studies. The aim was to bring Christof Schöch's electronic edition of Bérardier de Bataut's Essai sur le récit (1776) to the web. This edition is based on the Text Encoding Initiative's XML-based encoding scheme (TEI P5, subset TEI-Lite). This now de facto standard applies to machine-readable texts used chiefly in the humanities and social sciences. The intention of this edition is to make the edited text freely available on the web, to allow for alternative text views (here original and modern/corrected text), to ensure reader-friendly annotation and navigation, to permit on-line collaboration in encoding and annotation as well as user comments, all in an open source, generically usable, lightweight package. These aims were attained by relying on a GPL-based, public domain CMS (Drupal) and combining it with XSL-Stylesheets and Java Script.
Resumo:
Inhalt dieser Arbeit ist ein Verfahren zur numerischen Lösung der zweidimensionalen Flachwassergleichung, welche das Fließverhalten von Gewässern, deren Oberflächenausdehnung wesentlich größer als deren Tiefe ist, modelliert. Diese Gleichung beschreibt die gravitationsbedingte zeitliche Änderung eines gegebenen Anfangszustandes bei Gewässern mit freier Oberfläche. Diese Klasse beinhaltet Probleme wie das Verhalten von Wellen an flachen Stränden oder die Bewegung einer Flutwelle in einem Fluss. Diese Beispiele zeigen deutlich die Notwendigkeit, den Einfluss von Topographie sowie die Behandlung von Nass/Trockenübergängen im Verfahren zu berücksichtigen. In der vorliegenden Dissertation wird ein, in Gebieten mit hinreichender Wasserhöhe, hochgenaues Finite-Volumen-Verfahren zur numerischen Bestimmung des zeitlichen Verlaufs der Lösung der zweidimensionalen Flachwassergleichung aus gegebenen Anfangs- und Randbedingungen auf einem unstrukturierten Gitter vorgestellt, welches in der Lage ist, den Einfluss topographischer Quellterme auf die Strömung zu berücksichtigen, sowie in sogenannten \glqq lake at rest\grqq-stationären Zuständen diesen Einfluss mit den numerischen Flüssen exakt auszubalancieren. Basis des Verfahrens ist ein Finite-Volumen-Ansatz erster Ordnung, welcher durch eine WENO Rekonstruktion unter Verwendung der Methode der kleinsten Quadrate und eine sogenannte Space Time Expansion erweitert wird mit dem Ziel, ein Verfahren beliebig hoher Ordnung zu erhalten. Die im Verfahren auftretenden Riemannprobleme werden mit dem Riemannlöser von Chinnayya, LeRoux und Seguin von 1999 gelöst, welcher die Einflüsse der Topographie auf den Strömungsverlauf mit berücksichtigt. Es wird in der Arbeit bewiesen, dass die Koeffizienten der durch das WENO-Verfahren berechneten Rekonstruktionspolynome die räumlichen Ableitungen der zu rekonstruierenden Funktion mit einem zur Verfahrensordnung passenden Genauigkeitsgrad approximieren. Ebenso wird bewiesen, dass die Koeffizienten des aus der Space Time Expansion resultierenden Polynoms die räumlichen und zeitlichen Ableitungen der Lösung des Anfangswertproblems approximieren. Darüber hinaus wird die wohlbalanciertheit des Verfahrens für beliebig hohe numerische Ordnung bewiesen. Für die Behandlung von Nass/Trockenübergangen wird eine Methode zur Ordnungsreduktion abhängig von Wasserhöhe und Zellgröße vorgeschlagen. Dies ist notwendig, um in der Rechnung negative Werte für die Wasserhöhe, welche als Folge von Oszillationen des Raum-Zeit-Polynoms auftreten können, zu vermeiden. Numerische Ergebnisse die die theoretische Verfahrensordnung bestätigen werden ebenso präsentiert wie Beispiele, welche die hervorragenden Eigenschaften des Gesamtverfahrens in der Berechnung herausfordernder Probleme demonstrieren.
Resumo:
Evapotranspiration (ET) is a complex process in the hydrological cycle that influences the quantity of runoff and thus the irrigation water requirements. Numerous methods have been developed to estimate potential evapotranspiration (PET). Unfortunately, most of the reliable PET methods are parameter rich models and therefore, not feasible for application in data scarce regions. On the other hand, accuracy and reliability of simple PET models vary widely according to regional climate conditions. The objective of the present study was to evaluate the performance of three temperature-based and three radiation-based simple ET methods in estimating historical ET and projecting future ET at Muda Irrigation Scheme at Kedah, Malaysia. The performance was measured by comparing those methods with the parameter intensive Penman-Monteith Method. It was found that radiation based methods gave better performance compared to temperature-based methods in estimation of ET in the study area. Future ET simulated from projected climate data obtained through statistical downscaling technique also showed that radiation-based methods can project closer ET values to that projected by Penman-Monteith Method. It is expected that the study will guide in selecting suitable methods for estimating and projecting ET in accordance to availability of meteorological data.
Resumo:
The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.
Resumo:
Presentation given at the Al-Azhar Engineering First Conference, AEC’89, Dec. 9-12 1989, Cairo, Egypt. The paper presented at AEC'89 suggests an infinite storage scheme divided into one volume which is online and an arbitrary number of off-line volumes arranged into a linear chain which hold records which haven't been accessed recently. The online volume holds the records in sorted order (e.g. as a B-tree) and contains shortest prefixes of keys of records already pushed offline. As new records enter, older ones are retired to the first volume which is going offline next. Statistical arguments are given for the rate at which an off-line volume needs to be fetched to reload a record which had been retired before. The rate depends on the distribution of access probabilities as a function of time. Applications are medical records, production records or other data which need to be kept for a long time for legal reasons.
Resumo:
The Scheme86 and the HP Precision Architectures represent different trends in computer processor design. The former uses wide micro-instructions, parallel hardware, and a low latency memory interface. The latter encourages pipelined implementation and visible interlocks. To compare the merits of these approaches, algorithms frequently encountered in numerical and symbolic computation were hand-coded for each architecture. Timings were done in simulators and the results were evaluated to determine the speed of each design. Based on these measurements, conclusions were drawn as to which aspects of each architecture are suitable for a high- performance computer.
Resumo:
This paper presents a DHT-based grid resource indexing and discovery (DGRID) approach. With DGRID, resource-information data is stored on its own administrative domain and each domain, represented by an index server, is virtualized to several nodes (virtual servers) subjected to the number of resource types it has. Then, all nodes are arranged as a structured overlay network or distributed hash table (DHT). Comparing to existing grid resource indexing and discovery schemes, the benefits of DGRID include improving the security of domains, increasing the availability of data, and eliminating stale data.
Resumo:
This paper presents a new charging scheme for cost distribution along a point-to-multipoint connection when destination nodes are responsible for the cost. The scheme focus on QoS considerations and a complete range of choices is presented. These choices go from a safe scheme for the network operator to a fair scheme to the customer. The in-between cases are also covered. Specific and general problems, like the incidence of users disconnecting dynamically is also discussed. The aim of this scheme is to encourage the users to disperse the resource demand instead of having a large number of direct connections to the source of the data, which would result in a higher than necessary bandwidth use from the source. This would benefit the overall performance of the network. The implementation of this task must balance between the necessity to offer a competitive service and the risk of not recovering such service cost for the network operator. Throughout this paper reference to multicast charging is made without making any reference to any specific category of service. The proposed scheme is also evaluated with the criteria set proposed in the European ATM charging project CANCAN
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
Windows offers several high contrast colour schemes which may be useful for users with vision impairments or specific learning difficulties such as dyslexia.