516 resultados para Anharmonic oscillators
Resumo:
In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.
Resumo:
We have developed a technique that circumvents the process of elimination of secular terms and reproduces the uniformly valid approximations, amplitude equations, and first integrals. The technique is based on a rearrangement of secular terms and their grouping into the secular series that multiplies the constants of the asymptotic expansion. We illustrate the technique by deriving amplitude equations for standard nonlinear oscillator and boundary-layer problems. © 2008 The American Physical Society.
Resumo:
Steady state entanglement in ensembles of harmonic oscillators with a common squeezed reservoir is studied. Under certain conditions the ensemble features genuine multipartite entanglement in the steady state. Several analytic results regarding the bipartite and multipartite entanglement properties of the system are derived. We also discuss a possible experimental implementation which may exhibit steady state genuine multipartite entanglement.
Resumo:
Bit-Stream based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. Bit-Stream signals are inherently high frequency in nature, and as such some form of down sampling or modulating is essential to avoid excessive switching losses. This paper presents a novel three-phase space vector modulator, which is based on the Bit-Stream technique and suitable for standard three-phase inverter systems. The proposed modulator simultaneously converts a two phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulator consumes relatively few logic elements and does not require sector detectors, carrier oscillators or trigonometric functions. The performance of the modulator was evaluated using ModelSim. Results indicate that, subject to limits on the modulation index, the proposed modulator delivers a spread-spectrum output with total harmonic distortion comparable to standard space vector pulse width modulation techniques.
Resumo:
We propose a unified model to explain Quasi-Periodic Oscillation (QPO), particularly of high frequency, observed from black hole and neutron star systems globally. We consider accreting systems to be damped harmonic oscillators exhibiting epicyclic oscillations with higher-order nonlinear resonance to explain QPO. The resonance is expected to be driven by the disturbance from the compact object at its spin frequency. The model explains various properties parallelly for both types of the compact object. It describes QPOs successfully for ten different compact sources. Based on this, we predict the spin frequency of the neutron star Sco X-1 and specific angular momentum of black holes GRO J1655–40, XTE J1550–564, H1743–322, and GRS 1915+105.
Resumo:
We propose three variants of the extended Kalman filter (EKF) especially suited for parameter estimations in mechanical oscillators under Gaussian white noises. These filters are based on three versions of explicit and derivative-free local linearizations (DLL) of the non-linear drift terms in the governing stochastic differential equations (SDE-s). Besides a basic linearization of the non-linear drift functions via one-term replacements, linearizations using replacements through explicit Euler and Newmark expansions are also attempted in order to ensure higher closeness of true solutions with the linearized ones. Thus, unlike the conventional EKF, the proposed filters do not need computing derivatives (tangent matrices) at any stage. The measurements are synthetically generated by corrupting with noise the numerical solutions of the SDE-s through implicit versions of these linearizations. In order to demonstrate the effectiveness and accuracy of the proposed methods vis-à-vis the conventional EKF, numerical illustrations are provided for a few single degree-of-freedom (DOF) oscillators and a three-DOF shear frame with constant parameters.
Resumo:
We have carried out temperature- and pressure-dependent Raman and x-ray measurements on single crystals of Tb2Ti2O7. We attribute the observed anomalous temperature dependence of phonons to phonon-phonon anharmonic interactions. The quasiharmonic and anharmonic contributions to the temperature-dependent changes in phonon frequencies are estimated quantitatively using mode Grüneisen parameters derived from pressure-dependent Raman experiments and bulk modulus from high-pressure x-ray measurements. Further, our Raman and x-ray data suggest a subtle structural deformation of the pyrochlore lattice at ~9 GPa. We discuss possible implications of our results on the spin-liquid behavior of Tb2Ti2O7.
Resumo:
The anharmonic oscillator under combined sinusoidal and white noise excitation is studied using the Gaussian closure approximation. The mean response and the steady-state variance of the system is obtained by the WKBJ approximation and also by the Fokker Planck equation. The multiple steadystate solutions are obtained and their stability analysis is presented. Numerical results are obtained for a particular set of system parameters. The theoretical results are compared with a digital simulation study to bring out the usefulness of the present approximate theory.
Resumo:
The structure of real glasses has been considered to be microheterogeneous, composed of clusters and connective tissue. Particles in the cluster are assumed to be highly correlated in positions. The tissue is considered to have a truly amorphous structure with its particles vibrating in highly anharmonic potentials. Glass transition is recognized as corresponding to the melting of clusters. A simple mathematical model has been developed which accounts for various known features associated with glass transition, such as range of glass transition temperature,T g, variation ofT g with pressure, etc. Expressions for configurational thermodynamic properties and transport properties of glass forming systems are derived from the model. The relevence and limitations of the model are also discussed.
Resumo:
The frequency-dependent response of a pinned charge density wave is considered in terms of forced vibration of an oscillator held in an anharmonic well. It is shown that the effective pinning-frequency can be reduced by applying a d.c. field. If a strong a.c. field, superposed on a d.c. field is applied on such a system “jumps” can be observed in the frequency dependent response of the system. The conditions at which these “jumps” occur are investigated with reference to NbSe3. The possibility of observing such phenomena in other systems like superionic conductors, non-linear dielectrics like ferroelectrics is pointed out. The characteristics are expressed in terms of some “scaled variables” — in terms of which the characteristics show a universal behaviour.
Resumo:
We study a Hamiltonian describing a pendulum coupled with several anisochronous oscillators, giving a simple construction of unstable KAM tori and their stable and unstable manifolds for analytic perturbations. When the coupling takes place through an even trigonometric polynomial in the angle variables, we extend analytically the solutions of the equations of motion, order by order in the perturbation parameter, to a large neighbourhood of the real line representing time. Subsequently, we devise an asymptotic expansion for the splitting (matrix) associated with a homoclinic point. This expansion consists of contributions that are manifestly exponentially small in the limit of vanishing gravity, by a shift-of-countour argument. Hence, we infer a similar upper bound for the splitting itself. In particular, the derivation of the result does not call for a tree expansion with explicit cancellation mechanisms.
Resumo:
The frequency-dependent response of a pinned charge density wave is considered in terms of forced vibration of an oscillator held in an anharmonic well. It is shown that the effective pinning-frequency can be reduced by applying a d.c. field. If a strong a.c. field, superposed on a d.c. field is applied on such a system “jumps” can be observed in the frequency dependent response of the system. The conditions at which these “jumps” occur are investigated with reference to NbSe3. The possibility of observing such phenomena in other systems like superionic conductors, non-linear dielectrics like ferroelectrics is pointed out. The characteristics are expressed in terms of some “scaled variables” — in terms of which the characteristics show a universal behaviour
Resumo:
The Shifman-Vainshtein-Zakharov method of determining the eigenvalues and coupling strengths, from the operator product expansion, for the current correlation functions is studied in the nonrelativistic context, using the semiclassical expansion. The relationship between the low-lying eigenvalues, and the leading corrections to the imaginary-time Green function is elucidated by comparing systems which have almost identical spectra. In the case of an anharmonic oscillator it is found that with the procedure stated in the paper, that inclusion of more terms to the asymptotic expansion does not show any simple trend towards convergence to the exact values. Generalization to higher partial waves is given. In particular for the P-level of the oscillator, the procedure gives poorer results than for the S-level, although the ratio of the two comes out much better.
Resumo:
The exact expressions for the partition function (Q) and the coefficient of specific heat at constant volume (Cv) for a rotating-anharmonic oscillator molecule, including coupling and rotational cut-off, have been formulated and values of Q and Cv have been computed in the temperature range of 100 to 100,000 K for O2, N2 and H2 gases. The exact Q and Cv values are also compared with the corresponding rigid-rotator harmonic-oscillator (infinite rotational and vibrational levels) and rigid-rotator anharmonic-oscillator (infinite rotational levels) values. The rigid-rotator harmonic-oscillator approximation can be accepted for temperatures up to about 5000 K for O2 and N2. Beyond these temperatures the error in Cv will be significant, because of anharmonicity and rotational cut-off effects. For H2, the rigid-rotator harmonic-oscillator approximation becomes unacceptable even for temperatures as low as 2000 K.
Resumo:
Starting from a microscopic theory, we derive a master equation for a harmonic oscillator coupled to a bath of noninteracting oscillators. We follow a nonperturbative approach, proposed earlier by us for the free Brownian particle. The diffusion constants are calculated analytically and the positivity of the master equation is shown to hold above a critical temperature. We compare the long time behavior of the average kinetic and potential energies with known thermodynamic results. In the limit of vanishing oscillator frequency of the system, we recover the results of the free Brownian particle.