909 resultados para Algebraic Geometric Codes
Resumo:
[Décrets-lois. 1935]
Resumo:
The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution.
Resumo:
Computer simulations of the dynamics of a colloidal particle suspended in a fluid confined by an interface show that the asymptotic decay of the velocity correlation functions is algebraic. The exponents of the long-time tails depend on the direction of motion of the particle relative to the surface, as well as on the specific nature of the boundary conditions. In particular, we find that for the angular velocity correlation function, the decay in the presence of a slip surface is faster than the one corresponding to a stick one. An intuitive picture is introduced to explain the various long-time tails, and the simulations are compared with theoretical expressions where available.
Resumo:
Currently there are no guidelines within the Manual on Uniform Traffic Control Devices (MUTCD) on construction phasing and maintenance of traffic (MOT) for retrofit construction and maintenance projects involving innovative geometric designs. The research presented in this report addressed this gap in existing knowledge by investigating the state of the practice of construction phasing and MOT for several types of innovative geometric designs including the roundabout, single point urban interchange (SPUI), diverging diamond interchange (DDI), restricted-crossing left turn (RCUT), median U-turn (MUT), and displaced left turn (DLT). This report provides guidelines for transportation practitioners in developing construction phasing and MOT plans for innovative geometric designs. This report includes MOT Phasing Diagrams to assist in the development of MOT strategies for innovative designs. The MOT Phasing Diagrams were developed through a review of literature, survey, interviews with practitioners, and review of plans from innovative geometric design projects. These diagrams are provided as a tool to assist in improving work zone safety and mobility through construction of projects with innovative geometric designs. The aforementioned synthesis of existing knowledge documented existing practices for these types of designs.
Resumo:
Prolyl oligopeptidases cleave peptides on the carboxy side of internal proline residues and their inhibition has potential in the treatment of human brain disorders. Using our docking program fitted, we have designed a series of constrained covalent inhibitors, built from a series of bicyclic scaffolds, to study the optimal shape required for these small molecules. These structures bear nitrile functional groups that we predicted to covalently bind to the catalytic serine of the enzyme. Synthesis and biological assays using human brain-derived astrocytic cells and endothelial cells and human fibroblasts revealed that these compounds act as selective inhibitors of prolyl oligopeptidase activity compared to prolyl-dipeptidyl-aminopeptidase activity, are able to penetrate the cells and inhibit intracellular activities in intact living cells. This integrated computational and experimental study shed light on the binding mode of inhibitors in the enzyme active site and will guide the design of future drug-like molecules.
Resumo:
A new coding technique to be used in steganography is evaluated. The performanceof this new technique is computed and comparisons with the well-known theoreticalupper bound, Hamming upper bound and basic LSB are established.
Resumo:
Diplomityön tavoitteena on paineistimen yksityiskohtainen mallintaminen APROS- ja TRACE- termohydrauliikkaohjelmistoja käyttäen. Rakennetut paineistinmallit testattiin vertaamalla laskentatuloksia paineistimen täyttymistä, tyhjentymistä ja ruiskutusta käsittelevistä erilliskokeista saatuun mittausdataan. Tutkimuksen päätavoitteena on APROSin paineistinmallin validoiminen käyttäen vertailuaineistona PACTEL ATWS-koesarjan sopivia paineistinkokeita sekä MIT Pressurizer- ja Neptunus- erilliskokeita. Lisäksi rakennettiin malli Loviisan ydinvoimalaitoksen paineistimesta, jota käytettiin turbiinitrippitransientin simulointiin tarkoituksena selvittää mahdolliset voimalaitoksen ja koelaitteistojen mittakaavaerosta johtuvat vaikutukset APROSin paineistinlaskentaan. Kokeiden simuloinnissa testattiin erilaisia noodituksia ja mallinnusvaihtoehtoja, kuten entalpian ensimmäisen ja toisen kertaluvun diskretisointia, ja APROSin sekä TRACEn antamia tuloksia vertailtiin kattavasti toisiinsa. APROSin paineistinmallin lämmönsiirtokorrelaatioissa havaittiin merkittävä puute ja laskentatuloksiin saatiin huomattava parannus ottamalla käyttöön uusi seinämälauhtumismalli. Työssä tehdyt TRACE-simulaatiot ovat osa United States Nuclear Regulatory Commissionin kansainvälistä CAMP-koodinkehitys-ja validointiohjelmaa.
Resumo:
El principal objectiu d'aquest treball és implementar i exposar una descripció teòrica per a diferents esquemes de Physical Layer Network Coding. Utilitzant un esquema bàsic com a punt de partida, el projecte presenta la construcció i l'anàlisis de diferents esquemes de comunicació on la complexitat va augmentant a mesura que anem avançant en el projecte. El treball està estructurat en diferents parts: primer, es presenta una introducció a Physical Layer Network Coding i a Lattice Network Codes. A continuació, s'introdueixen les eines matemàtiques necessàries per entendre el CF System. Després, s'analitza i implementa el primer esquema bàsic. A partir del qual, implementem una versió vectorial del CF System i una versió codificada amb un Hamming q-ari. Finalment, s'estudien i implementen diferents estratègies per millorar la matriu de coeficients A.
Resumo:
La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.