309 resultados para Airports.
Resumo:
Expanding populations of resident Canada geese that remain in suburban and urban areas year-round often result in increased conflicts with humans. Non-lethal and humane means are needed for managing the size of Canada goose flocks residing near or on airports, golf courses, industrial parks, government sites, and city parks. A side effect of nicarbazin, a veterinary drug used to control coccidiosis in chickens, is decreased egg production and hatching. Exploiting this side effect, studies of nicarbazin for reducing the hatchability of eggs from Canada geese were conducted. An initial study in Coturnix quail verified reduction in hatchability in a species other than chickens. Because plasma nicarbazin was not routinely measured, a study in chickens was conducted to determine the relationship between plasma and egg nicarbazin. A comparative study in chickens, mallards, and Canada geese showed that nicarbazin absorption was lowest in geese. Studies in both penned and wild Canada geese showed that reduction in hatchability was possible but neither study used bait suitable for general field application. Bait development led to the OvoControl-G® (Innolytics LLC) bait, which resulted in reduction in hatchability of 51% at treated sites compared to control sites in the field. Previous studies showed that nicarbazin is practically non-toxic and is environmentally friendly; timing and management of baiting will minimize non-target hazards. OvoControl-G® 2500 ppm nicarbazin bait is recommended for incorporation into a comprehensive management plan as a reproductive inhibitor for use in controlling resident Canada goose flock sizes.
Resumo:
Many bird species are attracted to landfills which take domestic or putrescible waste. These sites provide a reliable, rich source of food which can attract large concentrations of birds. The birds may cause conflicts with human interest with respect to noise, birds carrying litter off site, possible transmission of pathogens in bird droppings and the potential for birdstrikes. In the UK there is an 8 mile safeguarding radius around an airfield, within which any planning applications must pass scrutiny from regulatory bodies to show they will not attract birds into the area and increase the birdstrike risk. Peckfield Landfill site near Leeds, West Yorkshire was chosen for a trial of a netting system designed to exclude birds from domestic waste landfills. The site was assessed for bird numbers before the trial, during the netting trial and after the net had been removed. A ScanCord net was installed for 6 weeks, during which time all household waste was tipped inside the net. Gull numbers decreased on the site from a mean of 1074 per hourly count to 29 per hourly count after two days. The gull numbers increased again after the net had been removed. Bird concentrations in the surroundings were also monitored to assess the effect of the net. Bird numbers in the immediate vicinity of the landfill site were higher than those further away. When the net was installed, the bird concentrations adjacent to the landfill site decreased. Corvids were not affected by the net as they fed on covered waste which was available outside the net throughout the trial. This shows that bird problems on a landfill site are complex, requiring a comprehensive policy of bird control. A supporting bird scaring system and clear operating policy for sites near to airports would be required.
Resumo:
When I spoke to the third Bird Control Seminar in 1966 on "Ecological Control of Bird Hazards to Aircraft", I reviewed what we had accomplished up to that time. I spoke about the extent of the problem, the bird species involved and the methods we used to make the airports less attractive to birds that created hazards to aircraft. I wish to discuss today our accomplishments since 1966. I have presented a number of papers on the topic including one with Dr. W. W. H. Gunn, in 1967 at a meeting in the United Kingdom, and others in the United States (1968 and 1970) and at the World Conference on Bird Hazards to Aircraft in Canada in 1969. There is no longer any question about the consequences of collision between birds and aircraft. Aircraft have not become less vulnerable either. Engines on the Boeing 747 have been changed as a result of damage caused by ingested birds. Figures crossing my desk daily show that while we are reducing the number of serious incidents and cutting down repair costs, we will continue to have bird strikes. Modification of the airport environment (Solman, 1966) has gone on continuously since 1963. The Department of Transport of Canada has spent more than 10 million dollars modifying major Canadian airports to reduce their attractiveness to birds. Modifications are still going on and will continue until bird attraction has been reduced to a minimum.
Resumo:
In worldwide aviation operations, bird collisions with aircraft and ingestions into engine inlets present safety hazards and financial loss through equipment damage, loss of service and disruption to operations. The problem is encountered by all types of aircraft, both military and commercial. Modern aircraft engines have achieved a high level of reliability while manufacturers and users continually strive to further improve the safety record. A major safety concern today includes common-cause events which involve significant power loss on more than one engine. These are externally-inflicted occurrences, with the most frequent being encounters with flocks of birds. Most frequently these encounters occur during flight operations in the area on or near airports, near the ground instead of at cruise altitude conditions. This paper focuses on the increasing threat to aircraft and engines posed by the recorded growth in geese populations in North America. Service data show that goose strikes are increasing, especially in North America, consistent with the growing resident geese populations estimated by the United States Department of Agriculture (USDA). Airport managers, along with the governmental authorities, need to develop a strategy to address this large flocking bird issue. This paper also presents statistics on the overall status of the bird threat for birds of all sizes in North America relative to other geographic regions. Overall, the data shows that Canada and the USA have had marked improvements in controlling the threat from damaging birds - except for the increase in geese strikes. To reduce bird ingestion hazards, more aggressive corrective measures are needed in international air transport to reduce the chances of serious incidents or accidents from bird ingestion encounters. Air transport authorities must continue to take preventative and avoidance actions to counter the threat of birdstrikes to aircraft. The primary objective of this paper is to increase awareness of, and focus attention on, the safety hazards presented by large flocking birds such as geese. In the worst case, multiple engine power loss due to large bird ingestion could result in an off-airport forced landing accident. Hopefully, such awareness will prompt governmental regulatory agencies to address the hazards associated with growing populations of geese in North America.
Resumo:
Embry-Riddle Aeronautical University (Prescott, AZ, USA) was awarded a grant from the William J. Hughes FAA Technical Center in October 1999 to develop and maintain a web site dealing with a wide variety of airport safety wildlife concerns. Initially, the web site enabled users to access related topics such as wildlife management (at/near airports), bird identification information, FAA wildlife management guidelines, education, pictures, current news, upcoming meetings and training, available jobs and discussion/forum sections. In April 2001, the web site was augmented with an on-line wildlife strike report (FAA Form 5200-7). Upon submittal on-line, “quick look” email notifications are sent to concerned government personnel. The distribution of these emails varies as to whether there was damage, human injuries/fatalities, and whether feather remains were collected and will be sent to the Smithsonian Institution for identification. In July 2002, a real-time on-line query system was incorporated to allow federal and local government agencies, airport and operator personnel, and USDA and airport wildlife biologists to access this database (which as of June 2005 contains 68,288 researched strike reports added to at a rate of approximately 500 strike reports/month) to formulate strategies to reduce the hazards wildlife present to aviation. To date (June 2005), over 15,000 on-line real-time queries were processed. In June 2004, ERAU was authorized to develop a graphical interface to this on-line query system. Current capabilities include mapping strikes (by species) on the US map, each of the contiguous 48 state maps (with AK and HI being added), and airport diagrams of the major metropolitan airports as well as the next 46 airports with the most reported strikes The latter capability depicts strikes by runway in plan as well as in elevation view. Currently under development is the ability to view time-sequenced strikes on the US map. This extensive graphical interface will give analysts the ability to view strike patterns with a wide variety of variables including species, seasons, migration patterns, etc. on US and state maps and airport diagrams.
Resumo:
The Vancouver International Airport (YVR) is the second busiest airport in Canada. YVR is located on Sea Island in the Fraser River Estuary - a world-class wintering and staging area for hundreds of thousands of migratory birds. The Fraser Delta supports Canada’s largest wintering populations of waterfowl, shorebirds, and raptors. The large number of aircraft movements and the presence of many birds near YVR pose a wide range of considerable aviation safety hazards. Until the late 1980s when a full-time Wildlife Control Program (WCP) was initiated, YVR had the highest number of bird strikes of any Canadian commercial airport. Although the risks of bird strikes associated with the operation of YVR are generally well known by airport managers, and a number of risk assessments have been conducted associated with the Sea Island Conservation Area, no quantitative assessment of risks of bird strikes has been conducted for airport operations at YVR. Because the goal of all airports is to operate safely, an airport wildlife management program strives to reduce the risk of bird strikes. A risk assessment establishes the current risk of strikes, which can be used as a benchmark to focus wildlife control activities and to assess the effectiveness of the program in reducing bird strike risks. A quantitative risk assessment also documents the process and information used in assessing risk and allows the assessment to be repeated in the future in order to measure the change in risk over time in an objective and comparative manner. This study was undertaken to comply with new Canadian legislation expected to take effect in 2006 requiring airports in Canada to conduct a risk assessment and develop a wildlife management plan. Although YVR has had a management plan for many years, it took this opportunity to update the plan and conduct a risk assessment.
Resumo:
The Canadian Wildlife Service has had twenty-five years experience with the problem caused by bird contacts with aircraft. I experienced my first bird strike, while flying as an observer on a waterfowl survey in August, 1940. Officers of the Service investigated bird problems at airports at Yarmouth, Nova Scotia, and Cartierville, Quebec, in the late 1940's. Those incidents involving gulls and low speed piston-engined aircraft caused minor damage to the aircraft but considerable disturbance to the operators. As aircraft speeds increased and airports became more numerous and busier the problem increased in extent and complexity. By 1960 it was apparent that the problem would grow worse and that work should be directed toward reducing the number of incidents. In 1960 an electra aircraft crashed at Boston, Massachusetts, killing 61 passengers. Starlings were involved in the engine malfunction which preceded the crash. In November, 1962 a viscount aircraft was damaged by collision with two swans between Baltimore and Washington and crashed with a loss of 17 lives. Those incidents focused attention on the bird hazard problem in the United States.
Resumo:
Knowing which individuals can be more efficient in spreading a pathogen throughout a determinate environment is a fundamental question in disease control. Indeed, over recent years the spread of epidemic diseases and its relationship with the topology of the involved system have been a recurrent topic in complex network theory, taking into account both network models and real-world data. In this paper we explore possible correlations between the heterogeneous spread of an epidemic disease governed by the susceptible-infected-recovered (SIR) model, and several attributes of the originating vertices, considering Erdos-Renyi (ER), Barabasi-Albert (BA) and random geometric graphs (RGG), as well as a real case study, the US air transportation network, which comprises the 500 busiest airports in the US along with inter-connections. Initially, the heterogeneity of the spreading is achieved by considering the RGG networks, in which we analytically derive an expression for the distribution of the spreading rates among the established contacts, by assuming that such rates decay exponentially with the distance that separates the individuals. Such a distribution is also considered for the ER and BA models, where we observe topological effects on the correlations. In the case of the airport network, the spreading rates are empirically defined, assumed to be directly proportional to the seat availability. Among both the theoretical and real networks considered, we observe a high correlation between the total epidemic prevalence and the degree, as well as the strength and the accessibility of the epidemic sources. For attributes such as the betweenness centrality and the k-shell index, however, the correlation depends on the topology considered.
Resumo:
Per garantire la sicurezza di tutte le operazioni in volo (avvicinamento, decollo, holding, ecc..) il decreto legge del 15 marzo del 2006 n. 151 ha imposto la redazione di opportune cartografie basate sul Regolamento ENAC per la Costruzione e l’Esercizio degli Aeroporti e sulla normativa internazionale ICAO così da poterle annettere agli Strumenti Urbanistici del territorio e governare lo sviluppo delle costruzioni. La sicurezza delle operazioni in volo è garantita attraverso delle Superfici di Delimitazione Ostacoli che impongono dei vincoli plano-altimetrici nelle aree limitrofe agli Aeroporti, quindi costruzioni, alberi e lo stesso terreno non devono forare queste superfici altrimenti diventerebbero “Ostacoli” alla navigazione aerea. Per gli ostacoli già presenti sono definiti dei provvedimenti da adottarsi in funzione della superficie che questi forano: potranno essere abbattuti se ricadenti in aree critiche come in prossimità delle piste oppure essere segnalati in mappe in uso ai piloti e anche con segnali visivi posizionati sugli stessi. Per quanto riguarda le future costruzioni, queste non potranno mai diventare Ostacolo in quanto sarà obbligatorio rispettare i vincoli plano-altimetrici. La tesi di laurea in questione vuole illustrare come si è arrivati alla redazione delle sopraccitate mappe nel caso specifico dell'Aeroporto Guglielmo Marconi di Bologna; sono analizzate nel primo capitolo le caratteristiche fisiche degli Aeroporti per acquisire una certa padronanza su termini tecnici che compaiono nei capitoli successivi (è inoltre presente un glossario). Nel secondo capitolo è individuato il percorso normativo che ha portato alla redazione dell’ultima revisione al Codice della Navigazione. Il capitolo 3 introduce le superfici di delimitazione ostacoli secondo quanto esposto nel Regolamento per la Costruzione e l’Esercizio degli Aeroporti di ENAC; il capitolo 4 è dedicato al lay-out dell’Aeroporto Guglielmo Marconi di Bologna. Infine la tesi si conclude con il capitoli 5 nel quale sono esposte le fasi e le metodologie usate per la realizzazione delle planimetrie e con il capitolo 6 in cui si discute delle problematiche sorte a causa dell’orografia del territorio che deve tenersi nella giusta considerazione per la definizione dei suddetti vincoli aeronautici.
Resumo:
Nella tesi si analizzano le principali fonti del rumore aeronautico, lo stato dell'arte dal punto di vista normativo, tecnologico e procedurale. Si analizza lo stato dell'arte anche riguardo alla classificazione degli aeromobili, proponendo un nuovo indice prestazionale in alternativa a quello indicato dalla metodologia di certificazione (AC36-ICAO) Allo scopo di diminuire l'impatto acustico degli aeromobili in fase di atterraggio, si analizzano col programma INM i benefici di procedure CDA a 3° rispetto alle procedure tradizionali e, di seguito di procedure CDA ad angoli maggiori in termini di riduzione di lunghezza e di area delle isofoniche SEL85, SEL80 e SEL75.
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
A new type of pavement has been gaining popularity over the last few years in Europe. It comprises a surface course with a semi-flexible material that provides significant advantages in comparison to both concrete and conventional asphalt, having both rut resistance and a degree of flexibility. It also provides good protection against the ingress of water to the foundation, since it has an impermeable surface. The semi-flexible material, generally known as grouted macadam, comprises an open-graded asphalt skeleton with 25% to 35% voids into which a cementitious slurry is grouted. This hybrid mixture provides good rut resistance and a surface highly resistant to fuel and oil spillage. Such properties allow it to be used in industrial areas, airports and harbours, where those situations are frequently associated with heavy and slow traffic. Grouted Macadams constitute a poorly understood branch of pavement technology and have generally been relegated to a role in certain specialist pavements whose performance is predicted on purely empirical evidence. Therefore, the main objectives of this project were related to better understanding the properties of this type of material, in order to predict its performance more realistically and to design pavements incorporating grouted macadam more accurately. Based on a standard mix design, several variables were studied during this project in order to characterise the behaviour of Grouted Macadams in general, and the influence of those variables on the fundamental properties of the final mixture. In this research project, one approach was used to the design of pavements incorporating Grouted Macadams: a traditional design method, based on laboratory determined of the stiffness modulus and the compressive strength.
Resumo:
Il presente lavoro mira ad analizzare l’organizzazione della gestione aeroportuale come venutasi a delineare a seguito dei processi di privatizzazione nella gestione stessa e di liberalizzazione nella prestazione dei servizi nonché ad esaminare gli effetti di tali processi sulla concorrenza tra aeroporti. Per affrontare tali profili di ricerca, il lavoro è suddiviso in quattro capitoli. Nel primo capitolo viene analizzata l’organizzazione amministrativa dell’aviazione civile e quindi i principali soggetti che operano e/o interagiscono nel mercato aeroportuale e le relative competenze. Nel secondo capitolo si analizza il ruolo del gestore aeroportuale quale soggetto a cui è affidato il compito di amministrare e gestire le infrastrutture aeroportuali e di coordinare e controllare le attività dei vari operatori privati presenti nello scalo. Pertanto si prenderà in esame l’evoluzione dei modelli di gestione aeroportuale, il rapporto tra concessionario e concedente, la qualificazione dell’attività di gestione dell’infrastruttura come servizio pubblico e la regolazione pubblicistica della stessa, volta a correggere le imperfezioni che possono distorcere il normale funzionamento dei meccanismi di mercato e a perseguire il benessere sociale. Nel terzo capitolo, si affronta il tema della liberalizzazione dei servizi, in particolari aerei e c.d. di handling. Infine, nel quarto e ultimo capitolo, si studia la concorrenza tra aeroporti e la sua interrelazione con l’infrastruttura ferroviaria.
Resumo:
dall'avvento della liberalizzazione, aeroporti e vettori hanno vissuto cambiamenti. Il maggior miglioramneto nella gestione degli aeroporti è una gestione più commerciale ed efficiente. Le forme di regolazione economica e le caratteristiche della gestione manageriale sono state indagate. Dodici paesi sono stati scelti per indagare la situazione del trasporto aereo mondiale, fra questi sia paesi con un sistema maturo sia paesi emergenti. La distribuzione del traffico è stata analizzata con l'indice HHI per evidenziare aeroporti con concentrazione maggiore di 0,25 (in accordo con la normativa statunitense); il sistema aeroportuale è stato analizzato con l'indice di Gini e con l'indice di dominanza. Infine, la teoria dei giochi si è dimostrata un valido supporto per studiare il mercato del trasporto aereo anche con l'uso di giochi di tipo DP
Resumo:
Dopo gli indubbi sviluppi politici e legali tendenti all’uniformazione è inevitabile non sostenere che anche il mercato della gestione delle infrastrutture e del trasporto aereo a terra costituisce un fattore determinante del trasporto aereo con una più stretta necessità di uniformazione del quadro regolamentare. La gestione aeroportuale e i servizi connessi è collocata all’interno del diritto aereo. Perché si configuri il “trasporto aereo” (nozione dinamica base che caratterizza il diritto del trasporto aereo) si ha la necessità di un accordo tra due paesi – un permesso di volo designato – una finestra di orario di decollo e atterraggio e la regolamentazione delle relative attività connesse, affinché si svolgano in situazione di safety, quale conditio sine qua non di tutte le attività di aviazione. Tuttavia, la migliore dottrina sente il bisogno di una trattazione separata della materia diritto aereo in senso stretto e quella della disciplina aeroportuale, benché i due ambiti sono tra di loro contigui. Questo è legittimato da esigenze contrapposte fra gli operatori dei due settori. In ultima considerazione possiamo sostenere che gli sviluppi legislativi, sia nel diritto aeronautico e in quello marittimo, portano all’abbraccio della impostazione di un diritto dei trasporti inclusivo di ogni forma dell’attuazione del fenomeno trasporto, scollegandosi al solo fenomeno dell’esercizio nautico quale elemento caratterizzante della disciplina. Quale futuro legislativo si prospetta per la gestione del bene aeroporto? Quale sarà la sua dimensione legale su questioni importanti sulle quali esiste una normazione europea come l’allocazione delle bande orarie, tasse aeroportuali e assistenza a terra oppure su quelle che hanno un carattere prevalentemente nazionale? E infine, quale sarebbe la strada da seguire per regolare il nuovo mercato aeroportuale che è passato dalla idea della competizione per il mercato esplorando anche la competizione nel mercato, con aeroporti che si comportano come operatori in concorrenza tra loro?