914 resultados para Air carrier
Resumo:
Emissions of CO2 are constantly growing since the beginning of industrial era. Interruption of the production of major emitters sectors (energy and agriculture) is not a viable way and reducing all the emission through carbon capture and storage (CCS) is not economically viable and little publicly accepted, therefore, it becomes fundamentals to take actions like retrofitting already developed infrastructure employing cleanest resources, modify the actual processes limiting the emissions, and reduce the emissions already present through direct air capture. The present thesis will deeply discuss the aspects mentioned in regard to syngas and hydrogen production since they have a central role in the market of energy and chemicals. Among the strategies discussed, greater emphasis is given to the application of looping technologies and to direct air capture processes, as they have been the main point of this work. Particularly, chemical looping methane reforming to syngas was studied with Aspen Plus thermodynamic simulations, thermogravimetric analysis characterization (TGA) and testing in a fixed bed reactor. The process was studied cyclically exploiting the redox properties of a Ce-based oxide oxygen carrier synthetized with a simple forming procedure. The two steps of the looping cycles were studied isothermally at 900 °C and 950° C with a mixture of 10 %CH4 in N2 and of 3% O2 in N2, for carrier reduction and oxidation, respectively. During the stay abroad, in collaboration with the EHT of Zurich, a CO2 capture process in presence of amine solid sorbents was investigated, studying the difference in the performance achievable with the use of contactors of different geometry. The process was studied at two concentrations (382 ppm CO2 in N2 and 5.62% CO2 in N2) and at different flow rates, to understand the dynamics of the adsorption process and to define the mass transfer limiting step.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that occur naturally in complex mixtures. Many of the adverse health effects of PAHs including cancer are linked to the activation of intracellular stress response signaling. This study has investigated intracellular MAPK signaling in response to PAHs in extracts from urban air collected in Stockholm, Sweden and Limeira, Brazil, in comparison to BP in HepG2 cells. Nanomolar concentrations of PAHs in the extracts induced activation of MEK4 signaling with down-stream increased gene expression of several important stress response mediators. Involvement of the MEK4/JNK pathway was confirmed using siRNA and an inhibitor of JNK signaling resulting in significantly reduced MAPK signaling transactivated by the AP-1 transcription factors ATF2 and c-Jun. ATF2 was also identified as a sensitive stress responsive protein with activation observed at extract concentrations equivalent to 0.1 nM BP. We show that exposure to low levels of environmental PAH mixtures more strongly activates these signaling pathways compared to BP alone suggesting effects due to interactions. Taken together, this is the first study showing the involvement of MEK4/JNK/AP-1 pathway in regulating the intracellular stress response after exposure to nanomolar levels of PAHs in environmental mixtures.
Resumo:
This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein.
Resumo:
During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.
Resumo:
The objective of the study is to evaluate the effect of the daily variation in concentrations of fine particulate matter (diameter less than 2.5µm - PM2.5) resulting from the burning of biomass on the daily number of hospitalizations of children and elderly people for respiratory diseases, in Alta Floresta and Tangará da Serra in the Brazilian Amazon in 2005. This is an ecological time series study that uses data on daily number of hospitalizations of children and the elderly for respiratory diseases, and estimated concentration of PM2.5. In Alta Floresta, the percentage increases in the relative risk (%RR) of hospitalization for respiratory diseases in children were significant for the whole year and for the dry season with 3-4 day lags. In the dry season these measurements reach 6% (95%CI: 1.4-10.8). The associations were sig-nificant for moving averages of 3-5 days. The %RR for the elderly was significant for the current day of the drought, with a 6.8% increase (95%CI: 0.5-13.5) for each additional 10µg/m3 of PM2.5. No as-sociations were verified for Tangara da Serra. The PM2.5 from the burning of biomass increased hospitalizations for respiratory diseases in children and the elderly.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
The implementation of confidential contracts between a container liner carrier and its customers, because of the Ocean Shipping Reform Act (OSRA) 1998, demands a revision in the methodology applied in the carrier's planning of marketing and sales. The marketing and sales planning process should be more scientific and with a better use of operational research tools considering the selection of the customers under contracts, the duration of the contracts, the freight, and the container imbalances of these contracts are basic factors for the carrier's yield. This work aims to develop a decision support system based on a linear programming model to generate the business plan for a container liner carrier, maximizing the contribution margin of its freight.